• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 19
  • 18
  • 13
  • 9
  • 7
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 199
  • 49
  • 45
  • 42
  • 28
  • 26
  • 20
  • 20
  • 18
  • 17
  • 15
  • 13
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Heavy oil tar emulsions in the water gas process

Stolzenbach, Charles Frederick, January 1934 (has links)
Thesis (Ph. D.)--Columbia University, 1934. / Vita. Bibliography: p. 20.
22

A study of the cracking of the tar vapors and of the gas from the low temperature carbonization of coal ...

Crawford, Thomas Stephen, January 1931 (has links)
Thesis (Ph. D.)--Columbia University, 1931. / Vita. "Authorized preprint from copyrighted articles in Gas age-record, volume 68, numbers 5, 6, and 7, August 1, 8, and 15, 1931." Bibliography: p. 35.
23

Production and application of activated carbons derived from waste materials

Gee, Ivan L. January 1997 (has links)
The development of waste management legislation in the 1990's has placed great importance on the sustainability of waste disposal/treatment options. Landfill of wastes is increasingly seen as a last resort and reduction, re-use and recovery of wastes is encouraged. The wastes investigated in this study (caustic tar and sewage sludges) are often disposed of by non-sustainable methods. In addition production of sewage sludge will have doubled by 2005 and disposal options are increasingly limited. Alternative treatment options are required for both these waste types that offer re-use potential. In this study the carbonisation and activation of these wastes has been demonstrated to be an effective means of treatment that also produces adsorbents that can be safely and usefully applied to treatment of aqueous waste streams. Previous studies have examined the production of clay-carbon adsorbents from spent bleaching earth and limited studies have been conducted on producing adsorbents from sewage sludges. However, the majority of these have limited investigations to production of oils from sludge and no previous studies of caustic tar carbonisation have been conducted. Treatment of caustic tar involved neutralisation with HCl and absorption of the organic content of the waste by Fullers or Acid Activated Earth. The clay-waste mix was subsequently carbonised (375°C for 2 hours) and activated using an optimised ZnClj activation procedure (600°C for 1 hour). Activated carbons were produced from sewage sludges using carbonisation (500°C for 2 hours), CO^ activation (700°C for I hour) and ZnCl^ activation (450°C for 2 hours and 600°C for 1 hour). The adsorbents produced had well developed porosity and large surface areas (up to 225mVg for caustic tar derived carbons and up to 995mVg for sewage sludge based carbons) and were adsorptive of a range of organic pollutants common in effluents. ZnC^ activated, un-digested sewage sludges proved to be the most effective adsorbents. COj activated sewage sludges and caustic tar derived carbons had similar adsorption capacities for the organic pollutants studied. Leaching tests demonstrated that metals present in the adsorbents other than the ZnClj activated carbons were not readily leachable and would not prevent re-use of the carbons in the treatment of aqueous effluents.
24

Smouldering combustion of organic liquids in porous media for remediating NAPL-contaminated soils

Pironi, Paolo January 2010 (has links)
This research investigated the potential of smouldering combustion to be employed as a remediation approach for soil contaminated by non-aqueous phase liquids (NAPLs). Small-scale (~15 cm), proof-of-concept experiments were the first to demonstrate that organic liquids embedded within an inert soil matrix can be successfully smouldered. Intermediate-scale (~30 cm) column experiments examined in detail the behaviour of the combustion process including its relationship to mass and energy balance and the evolution of temperature profiles. In addition, detailed evaluations of environmental parameters (e.g., soil concentrations, gas emissions) were conducted. For the first time, it was demonstrated that NAPL smouldering combustion can be self-sustaining (i.e., propagation of the smouldering front after termination of the igniter) and self-terminating (i.e., natural extinction of the reaction after all of the NAPL is destroyed). More than 30 column sensitivity experiments quantified the broad range of process parameters - including contaminant type, contaminant mass, soil type, and oxidizer flow rates - within which the process was self-sustaining and essentially complete remediation was achieved (i.e. contaminant mass removal in excess of 99.5%). Maximum burning temperatures were observed in the range 600-1100 C. Average propagation velocities varied between 0.7e-4 and 1.2e-4 m/s. Intensity and velocity of the process were shown to be controlled by the rate at which oxidizer is delivered. Contaminant type and mass was observed to affect peak temperatures and propagation velocity by influencing the energy balance at the reaction front. Moreover, mass and energy balance models were demonstrated to provide reasonable predictions of the observed propagation velocities. Overall, this research introduced an entirely new approach to the remediation of NAPL-contaminated soils and, further, advanced the understanding of the mechanisms that control the underlying process of smouldering combustion of liquids.
25

In situ Chemical Oxidation of Creosote/Coal Tar Residuals: Experimental and Numerical Investigation

Forsey, Steven January 2004 (has links)
Coal tar, coal tar creosote and oily wastes are often present as subsurface contaminants that may migrate below the water table, leaving a widely distributed residual source of contaminants leaching to the ground water. <i>In situ</i> chemical oxidation is a potentially viable technology for the remediation of aquifers contaminated with creosote and coal tars. The oxidant of choice would be flushed through the contaminated area to oxidize aqueous contaminants and enhance the mass transfer of contaminants from the oil phase. A series of batch and column experiments were performed to assess the ability of a chemical oxidizing reagent to oxidize creosote compounds and to increase mass transfer rates. Results from the column experiments were then simulated using a reactive transport model that considered 12 different creosote compounds undergoing dissolution, oxidation and advective-dispersive transport. Three strong chemical oxidizing reagents, Fenton's Reagent, potassium persulfate with ferrous ions, and potassium permanganate were tested with batch experiments to determine their reactivity towards creosote compounds. All three reagents successfully decomposed aqueous creosote compounds and were able to reduce the mass of the monitored creosote compounds within the oil phase. However, both the Fenton's and persulfate reagents required large molar ratios of iron and peroxide because the precipitation of iron continually removed the iron catalyst from the aqueous phase. Fenton's and persulfate reagents could be used in systems that are allowed to become acidic to solubilize the iron, but the cost of adjusting the pH, potential impact on aquifer geochemistry and the short lived free radical reaction make these reagents less practical than KMnO4. KMnO4 oxidizes a wide variety of creosote compound, can be used at very high concentrations, and its concentration will not be reduced significantly as it moves through the zone of contamination. The feasibility of using potassium permanganate as an oxidizing reagent for <i>in situ</i> treatment of creosote residuals was investigated using batch column experiments. Column experiments were conducted at a neutral pH in a carbonate rich sand matrix with creosote at 8 % saturation. The columns were treated intermittently with simulated ground water or KMnO4 dissolved in simulated ground water (8 g/L) for 172 days. Under these experimental conditions the KMnO4 decreased the initial mass of the monitored creosote compounds by 36. 5%, whereas in the control column (no oxidizer) only 3. 9% was removed. To remove all of the monitored creosote compounds from the columns it was calculated that the volume needed would be 40 times less for the KMnO4 solution, compared to flushing alone with simulated ground water. To evaluate the potential effectiveness of <i>in situ</i> chemical oxidation at field sites, numerical model simulations need to incorporate relevant chemical oxidation rates to assess system performance and to provide design guidance. In-depth kinetic studies were performed to determine rate constants and to gain insight into the oxidation of creosote compounds with KMnO4. The study examined the kinetics of the oxidative treatment of a selected group of creosote/coal tar compounds in water using excess potassium permanganate and investigated the correlation between reactivity and physical/chemical properties of the organic pollutants. The oxidation of naphthalene, phenanthrene, chrysene, pyrene, 1-methylnapthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole, isopropylbenzene, ethylbenzene and methylbenzene closely followed first-order reaction kinetics, enabling calculation of second-order rate constants. Fluoranthene was only partially oxidized by permanganate and the oxidation of anthracene was too fast to be measured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene failed to react in this study. Comprehensive column experiments complemented by numerical modeling revealed an unequal enhancement of the removal of creosote compounds from the oil phase. For the more readily oxidizable compounds such as pyrene and naphthalene, a significant increase in the mass transfer rates was observed in the oxidation columns, compared to the oxidant free column. For non-oxidizable compounds such as biphenyl and dibenzofuran, an increase in the rate of mass removal was also observed in the oxidation columns, even though their aqueous concentrations were not reduced in the column. This was due to the rapid removal of the more readily oxidizable compounds from the oil, which increases the mole fraction of the non-oxidizable compounds. Thus according to Raoult's Law, the concentration in the aqueous phase becomes closer to its pure phase liquid solubility and its aqueous concentration increases. The most significant result of the experiments is the observed increase in the rate of removal of those compounds that have low aqueous solubilities and are readily oxidized, such as pyrene and fluorene. Compounds that have low aqueous solubilities and are not readily oxidizable, such as chrysene, may still take a long period of time to be removed, but the removal time is greatly reduced with oxidation compared to flushing the area with water alone.
26

In situ Chemical Oxidation of Creosote/Coal Tar Residuals: Experimental and Numerical Investigation

Forsey, Steven January 2004 (has links)
Coal tar, coal tar creosote and oily wastes are often present as subsurface contaminants that may migrate below the water table, leaving a widely distributed residual source of contaminants leaching to the ground water. <i>In situ</i> chemical oxidation is a potentially viable technology for the remediation of aquifers contaminated with creosote and coal tars. The oxidant of choice would be flushed through the contaminated area to oxidize aqueous contaminants and enhance the mass transfer of contaminants from the oil phase. A series of batch and column experiments were performed to assess the ability of a chemical oxidizing reagent to oxidize creosote compounds and to increase mass transfer rates. Results from the column experiments were then simulated using a reactive transport model that considered 12 different creosote compounds undergoing dissolution, oxidation and advective-dispersive transport. Three strong chemical oxidizing reagents, Fenton's Reagent, potassium persulfate with ferrous ions, and potassium permanganate were tested with batch experiments to determine their reactivity towards creosote compounds. All three reagents successfully decomposed aqueous creosote compounds and were able to reduce the mass of the monitored creosote compounds within the oil phase. However, both the Fenton's and persulfate reagents required large molar ratios of iron and peroxide because the precipitation of iron continually removed the iron catalyst from the aqueous phase. Fenton's and persulfate reagents could be used in systems that are allowed to become acidic to solubilize the iron, but the cost of adjusting the pH, potential impact on aquifer geochemistry and the short lived free radical reaction make these reagents less practical than KMnO4. KMnO4 oxidizes a wide variety of creosote compound, can be used at very high concentrations, and its concentration will not be reduced significantly as it moves through the zone of contamination. The feasibility of using potassium permanganate as an oxidizing reagent for <i>in situ</i> treatment of creosote residuals was investigated using batch column experiments. Column experiments were conducted at a neutral pH in a carbonate rich sand matrix with creosote at 8 % saturation. The columns were treated intermittently with simulated ground water or KMnO4 dissolved in simulated ground water (8 g/L) for 172 days. Under these experimental conditions the KMnO4 decreased the initial mass of the monitored creosote compounds by 36. 5%, whereas in the control column (no oxidizer) only 3. 9% was removed. To remove all of the monitored creosote compounds from the columns it was calculated that the volume needed would be 40 times less for the KMnO4 solution, compared to flushing alone with simulated ground water. To evaluate the potential effectiveness of <i>in situ</i> chemical oxidation at field sites, numerical model simulations need to incorporate relevant chemical oxidation rates to assess system performance and to provide design guidance. In-depth kinetic studies were performed to determine rate constants and to gain insight into the oxidation of creosote compounds with KMnO4. The study examined the kinetics of the oxidative treatment of a selected group of creosote/coal tar compounds in water using excess potassium permanganate and investigated the correlation between reactivity and physical/chemical properties of the organic pollutants. The oxidation of naphthalene, phenanthrene, chrysene, pyrene, 1-methylnapthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole, isopropylbenzene, ethylbenzene and methylbenzene closely followed first-order reaction kinetics, enabling calculation of second-order rate constants. Fluoranthene was only partially oxidized by permanganate and the oxidation of anthracene was too fast to be measured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene failed to react in this study. Comprehensive column experiments complemented by numerical modeling revealed an unequal enhancement of the removal of creosote compounds from the oil phase. For the more readily oxidizable compounds such as pyrene and naphthalene, a significant increase in the mass transfer rates was observed in the oxidation columns, compared to the oxidant free column. For non-oxidizable compounds such as biphenyl and dibenzofuran, an increase in the rate of mass removal was also observed in the oxidation columns, even though their aqueous concentrations were not reduced in the column. This was due to the rapid removal of the more readily oxidizable compounds from the oil, which increases the mole fraction of the non-oxidizable compounds. Thus according to Raoult's Law, the concentration in the aqueous phase becomes closer to its pure phase liquid solubility and its aqueous concentration increases. The most significant result of the experiments is the observed increase in the rate of removal of those compounds that have low aqueous solubilities and are readily oxidized, such as pyrene and fluorene. Compounds that have low aqueous solubilities and are not readily oxidizable, such as chrysene, may still take a long period of time to be removed, but the removal time is greatly reduced with oxidation compared to flushing the area with water alone.
27

Adsorptive removal of nitrogen from coal-based needle coke feedstocks using activated carbon

Madala, Sreeja. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains viii, 64 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 62-64).
28

A novel polymeric approach to the cold cure briquetting of anthracite/breeze fines

Thorns, Leisha Jane January 2001 (has links)
No description available.
29

Calculation of temperatures and their implications for unchipped and chipped bituminous materials during laying

Hunter, Robert Newell January 1988 (has links)
No description available.
30

Reduction of zinc oxide in sintering of manganese furnace dust

Shen, Ruihua, Materials Science & Engineering, Faculty of Science, UNSW January 2009 (has links)
Manganese furnace dust is made up of volatiles and fine particles of the raw materials collected from the off-gas during smelting of manganese alloys. Impediments to the recycling of the manganese furnace dust back to the ferroalloy furnaces are handling due to the presence of tar, and the potential accumulation of zinc in the furnaces, which can cause irregularities in their operation. The aim of the thesis was to establish conditions for zinc removal from the dust and assess the feasibility of the dust recycling in the Tasmanian Electrometallurgical Company sinter plant. Major findings are: - Manganese furnace dust taken from the settling ponds contained water, carbonaceous materials (tar), and metal oxides. The carbon content of the dried furnace dust was about 20% and the average manganese and zinc contents were 33.4 and 1.29%, respectively. Moisture content was 30-60%. - The tar components were aliphatic hydrocarbons and polyaromatic hydrocarbons, their derivatives, and sulphur- and oxygen-containing compounds with a wide range of carbon number (15-28) and boiling point (230-530oC). Light hydrocarbons were not detected. - If manganese furnace dust was recycled to ferroalloy furnaces through the sintering plant, the overall zinc input had increased by 51-143%. Sustainable utilisation of manganese furnace dust should include enhanced zinc removal. - Reduction of zinc oxide from manganese furnace dust pellets started at 800oC. Zinc oxide was reduced to zinc vapour by tar in the dust. Temperature and gas atmosphere were key parameters affecting the zinc removal from the dust. The zinc removal rate increased with increasing temperature and was close to completion at 1100oC. - Optimal conditions for removal of zinc from the furnace dust include: temperature in the range 1000-1150oC, inert gas atmosphere and furnace dust fraction in the furnace dust-manganese ore mixture above 60%. - Zinc removal in the processing of manganese furnace dust in the sinter plant was low because of zinc reoxidation in the sinter bed. This makes the sinter plant unsuitable for recycling of the dust. More suitable conditions for utilisation of manganese furnace dust exist in the rotary hearth furnace, which development is recommended for further study.

Page generated in 0.0249 seconds