• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 59
  • 11
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 478
  • 253
  • 211
  • 175
  • 68
  • 55
  • 52
  • 45
  • 43
  • 41
  • 31
  • 29
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Thermodynamic behaviour of supercritical water as working fluid in advanced coal-fired power plants : simulation and design study

Gil-García, Álvaro Antonio January 2017 (has links)
The UK is facing an energy crisis due to the closure of old nuclear power plants which will not be replaced until Generation III nuclear reactors are built. Coal is a realistic option to fill the gap, although there is a need to use cleaner and efficient technologies as a means to comply with global environmental regulations. Supercritical coal-fired power is a viable clean coal technology; however the UK National Grid Code is built around conventional power plants, and thus compliance is uncertain. Modelling the thermal behaviour of the supercritical boiler water cycle using computational fluid dynamics is a practical method to approach compliance. The CFD models developed with the software Comsol Multiphysics were validated and verified using experimental and numerical data, respectively. Subsequently, a test-element representing one pipe from the water wall was scaled-down to match computational requirements, and tested at two different thermal boundary conditions. A strong, forcedconvective flow was revealed, with buoyancy effects at the inlet and a considerable influence of thermal acceleration. The sharp changes of the thermo-physical properties were the most influential hydrothermal factor. Heat transfer coefficient peaked near the pipe inlet, and the outlet section showed mild hydro-thermal performance, impaired by the acceleration effects.
42

Anthracyclines used in the treatment of cancer: their harmful effects on the Reno-cardiovascular connection

Bedja, Djahida, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Background: The molecular and cellular mechanisms corresponding to the compensatory and maladaptive hypertrophy and remodeling of the left ventricle with chronic doxorubicin (DOX) treatment are currently unclear. Non-invasive methods of determining these changes are still deficient. To investigate these changes, 8 groups of rats in 4 different studies including a control saline group of the same age, gender and strain were evaluated for cardiac morphology and function including: (1) DOX dose response using a cumulative dose of 7.5mg/kg, and 15mg/kg in 8-10 week old female Sprague-Dawley (SD) rats, (2) strain differences were investigated in response to a cumulative dose of 15mg/kg in 8-10 week old female Fisher (F344) rats compared to the SD rats treated with same dose, (3) the role of gender and aging were studied in response to DOX at a cumulative dose of 3mg/kg in male and female neonates, and (4) combined losartan and a cumulative dose of 15mg/kg of DOX in 8-10 week old female SD rats compared to controls of saline and 15mg/kg treated SD rats. Method: Onset of cardiac toxicity was assessed by echocardiography and the rat model of heart failure was developed when the fractional shortening declined ≤ 40%. The mean arterial pressure and single-photon-emission computer tomography scanning and Tc-99m-HYNIC-Annexin V were performed at week 10 to analyze blood pressure and quantify apoptosis, respectively. All rats were euthanized at week 10 except for the neonates and two of the 7.5mg/kg-treated SD rats that were left alive for study of long -term cardiac side effects. The heart and kidney tissues were harvested for protein isolation and histopathological studies. Blood samples were collected for hematological and lipid profile analysis in all the rats. Results: A dose- and time-dependent increase in LVmass coincided with a parallel increase in MAP, kidney damage, expression of myocardial erbB2, heat shock protein 90 Akt, mTOR, GSK-3β, TGF-β, pSMAD2, and cardiomyocyte apoptosis in SD rats treated with 7.5mg/kg and 15mg/kg of DOX at week 10. The 7.5 kg/kg treatment showed adaptive hypertrophy whereas the 15mg/kg treatment group showed maladaptive hypertrophy. However decompensation was apparent by week 14 in other rats treated with 7.5mg/kg. LVmass, FS, MAP, kidney damage, red blood cells and blood lipid levels were not significantly altered in the F344 rats compared to the 15 mg/kg-treated SD rats. Losartan supplementation reduced the left ventricular hypertrophy, improved myocardial contractility, and reduced TGF-β expression compared to the DOX-treated SD rats. The 3mg/kg of DOX in neonates induced cardiac toxicity and deaths in about 60% of males 50 weeks after treatment; the females instead developed mammary tumors. Conclusion: The results of this study suggest that age, gender, and strain differences are risks factors for doxorubicin-induced harmful reno-cardiovascular toxicity. The inhibition of TGF-β expression by losartan can be used in prevention of chronic doxorubicin-induced cardiac toxicity without interfering with its anti-tumor activities.
43

Development of a physics-based morphodynamic model and its application to braided rivers

Yang, Haiyan January 2013 (has links)
An understanding of the interaction between flow, sediment and bed morphology is essential for dealing with engineering problems such as floods, river bank erosion and sedimentation in reservoirs. However, the morphodynamic processes in natural braided rivers are still not well understood due to difficulties in measurements in field. Numerical models provide a considerable assistance to investigate these complicated processes in natural rivers. In the present study, a physics-based two-dimensional model based on DIVAST with suspended load and bed load transport has been developed to simulate the braiding processes and morphodynamic changes in braided rivers. In this model, the hydrodynamic equations are solved using the ADI scheme and the advective-diffusion equations are solved using a modified ULTIMATE QUICKEST scheme. The TVD scheme has also been included to simulate trans-critical flows. Regarding sediment transport, a new module based on bed load transport theories has been developed. A module for suspended load transport based on energy theory has been improved. Secondary flow and slope effect are integrated into the model by altering the sediment transport rate. A multiple layer technique with a vertical sorting process has been applied including bank erosion. Graded sediment fractions are adopted to represent the coarsening and fining processes with sheltering effect. The model has been verified by solving a 2-D dam-break problem which worked well in predicting the water surface changes in trans-critical flow. It has also been tested by a sediment aggradation case and found to predict the flow and bed deformation effectively. The model has been applied to predict a laboratory river with bed load, with its prototype being the Sunwapta River, Canada. Braiding mechanisms and channel pattern responses to abruptly increased discharge have been investigated and compared with those of laboratory and natural rivers. Growth and relationship of active braiding intensity and total braiding intensity show similar trends to those of iii the laboratory river. The predicted river shows anisotropic scaling with periodical braiding morphology presented by sequential maximum scour depths. The model also simulates a large idealised braided river with suspended load transport. Its braiding mechanisms have been discussed and compared with the river with bed load and natural rivers. Important processes at bars and confluences have been investigated. Statistical characteristics of the river have been analysed with braiding indices, state-space plots and bar parameters. These findings have been compared with those from real rivers to assess the model simulating real braided rivers.
44

Cost minimisation in micro-hydro systems using pumps-as-turbines

Alatorre-Frenk, Claudio January 1994 (has links)
The use of reverse-running pumps as turbines (PATs) is a promising technology for small-scale hydropower. This thesis reviews the published knowledge about PATs and deals with some areas of uncertainty that have hampered their dissemination, especially in 'developing' countries. Two options for accommodating seasonal flow variations using PATs are examined and compared with using conventional turbines (that have flow control devices). This has been done using financial parameters, and it is shown' that, under typical conditions, PATs are more economic. The various published techniques for predicting the turbine-mode performance of a pump without expensive tests are reviewed; a new heuristic one is developed, and it is shown (using the same financial parameters and a large set of test data in both modes of operation) that the cost of prediction inaccuracy is negligible under typical circumstances. The economics of different ways of accommodating water-hammer are explored. Finally, the results of laboratory tests on a PAT are presented, including cavitation tests, and for the latter a theoretical framework is exposed.
45

Three-dimensional simulation of river flood flows

Morvan, Herve P. January 2001 (has links)
This thesis describes the implementation of general Computational Fluid Dynamics (CFD) techniques to laboratory and natural channels under flood flow conditions. Two commercially available codes, TELEMAC and CFX4, have been used in this work. The assessment of CFD for the calculation of flooded channel flow dynamics is carried out by simulating one laboratory test case from the Flood Channel Facility (FCF) Series B. This test case is that of a meandering two-stage channel with a depth ratio of 25% on the flood plain. Results from a computer simulation of experiment B23 are presented with a detailed quantitative comparison of the measured velocity, turbulence and bed shear stress. It supports the conclusion that CFD is able to account for the different flow mechanisms arising from the interaction between inbank and overbank flows in meandering channels. The maximum error in the prediction of the velocity is 10% and the comparisons show the calculations of bed shear stress to be reasonably accurate as well. Numerical tests indicate that the numerical solution is relatively independent of the boundary conditions, and confirm that turbulence transport is of minor importance in the experiment simulated. Numerical results from the simulation of flood flow mechanisms in natural rivers are also presented. It is hoped that these are of value to practitioners. Two 1-km reaches on the River Severn and River Ribble are modelled. They permit the investigation of two-stage channel flow dynamics at a larger scale. The numerical verification process establishes that the scale and the complex nature of the geometry are limiting factors, particularly for the numerical discretization of the domain and the calculation of the variables at the walls. It is however possible to estimate a priori part of the error such constraints generate. Away from the walls, the flow main features seem well predicted. The parallel between the velocity fields observed in river flood flows and those observed in the FCF is evident. Validation against field data suggests that the models are able to reproduce the flow mechanisms and account for bed shear stress variations correctly. Yet a significant level of uncertainty remains when the model predictions are compared against measured point data; more validation work is therefore required.
46

The broaching of ships in following seas

Renilson, M. R. January 1981 (has links)
The two aims of this work were: (1) to develop a theoretical technique for determining the conditions where a broach would occur, and (2) to identify the principal factors affecting the liability of a ship to broach. The first step was to develop a mathematical model based on the conventional manoeuvring equations with coefficients which were functions of the ship's longitudinal position in the wave, but independent of encounter frequency. Next, a theoretical method for calculating the values of some of the coefficients as functions of wave position was developed using a strip theory approach and the results compared with those obtained experimentally. The experimental technique involved using a planar motion mechanism to oscillate a constrained model balanced on a wave created by a wave dozer in a circulating water channel. Although the agreement was poor and experimental scatter high for some of the coefficients, the more important ones were predicted quite well using the theory. Constrained model experiments were also --carried out in calm water in order to determine the approximate value of the roll coupling terms and it was found that, since they were small, the roll equation could be ignored as a first approximation. It was then possible to study the stability of the lateral and longitudinal motions separately for various wavelengths and to determine that the principal factor causing a broach was the large wave induced yaw moment combined with the small restoring moment available from the rudder operating with reduced effectiveness. The lateral and longitudinal equations were then combined using a digital/analogue hybrid simulation permitting the conditions which caused a broach to be determined. When the results from the simulation-were compared with results which had already been carried out by the Admiralty Marine Technology Establishment at Haslar there was fairly good agreement, implying that this method could be used to determine whether a proposed design would meet an acceptable standard. Finally, possible improvements to the simulation were suggested and guidelines for reducing the liability to broach were given both for the operator and the designer.
47

Numerical modelling of river rehabilitation schemes

Swindale, Neil January 1999 (has links)
This thesis is based on the application of hydraulic modelling techniques to the study of river rehabilitation schemes. River channelization and rehabilitation techniques are reviewed and the restoration of the River Idle is detailed. The rehabilitation of the Idle, consisting principally of the installation of a number of flow deflectors, forms the basis of the modelling work carried out. Open channel modelling techniques are reviewed and the packages ISIS, HEC-RAS, SSIIM and CFX are applied to the River Idle. Results from SSIIM (two dimensional) and CFX (three dimensional) are validated against site measured velocities. SSIIM predicted velocities calibrate poorly against site data whilst CFX results are considerably more encouraging. Reasons for the increased accuracy of the three dimensional results are discussed. The effect of the installation of the flow deflectors on aquatic habitat is simulated using the techniques underlying the Instream Flow Incremental Methodology (IFIM). The results from the one dimensional model ISIS and the three dimensional package CFX are used to make available habitat predictions. Results indicate an improvement in habitat for adult and spawning chub but a worsening of habitat for roach fry. However, habitat for roach fry can be expected to improve with time as the geomorphology of the river responds to the installation of the deflectors. The results from the habitat modelling exercise also indicate significant discrepancies between the results obtained by applying the one and three dimensional models. Greater improvements in habitat are indicated in the results from the three dimensional modelling approach. This can be attributed to a number of factors but most significantly the fact that the three dimensional model, in solving two further momentum balance equations, accurately simulates a plume of higher velocity which is produced by the narrowing of the channel width at the deflector. This plume of higher velocity is propagated downstream for some distance beyond the deflector and is associated with improved habitat suitability in the case of adult and spawning chub. The effect of the deflectors on the movement of sediments in the Idle is simulated using ISIS Sediment, a module of the ISIS package, and SHEAR. SHEAR is a FORTRAN program, written for this thesis, which calculates bed shear stresses from the vertical velocity distribution predicted by CFX. The predicted bed shear stresses are compared with a critical shear stress for erosion which is calculated from the Shields criteria. Deposition areas can be implied from zones of reduced bed shear stress. Thus, SHEAR is able to describe the spatial detail of erosion and deposition, for any given sediment particle size, at a specific discharge. Results from ISIS Sediment and SHEAR are compared qualitatively with site measurements of bed erosion that has taken place at a single deflector site. Results indicate that the programs have successfully reproduced the major features of the movement of sediments observed on site. These consist of the erosion of a scour pool adjacent to the deflector tip and deposition in the lee of the deflector leading to the development of a bank of sediment. Overall, significant benefits are indicated in a three dimensional approach over the more traditional one dimensional models. These are evident in both improved calibration with site measured velocities, better available habitat prediction and the ability to describe the spatial detail of erosion and deposition.
48

Investigation of Seasat : a synthetic aperture radar (SAR) for topographic mapping applications

Ali, Abdalla Elsadig January 1982 (has links)
The thesis is concerned with an investigation of the possibilities of generating metric information and carrying out topographic mapping operations from side-looking radar images acquired from Earthorbiting satellites, as exemplified by the synthetic aperture radar (SAR) system flown onboard the Seasat satellite, Besides the theoretical analysis of the problem, several images covering test areas with different topographic characteristics have been used for extensive and comprehensive tests of the geometric accuracy of the SAR system; for experiments with digital monoplotting techniques applied to the SAR images; and for tests concerned with the detection and"interpretation of objects appearing on these images. The results show that metric information of a limited accuracy can be obtained from satellite SAR images. This could act as the basis for reconnaissance-type mapping at scales of 1: 250,000 and smaller. The geometric accuracy actually achieved does, however, depend heavily on the method used initially to process the SAR image data. In this respect, the results obtained with the digitally processed images are superior to those obtained with the optically processed images. The influence of the topographic relief present on the ground is also noticeable and various techniques have been devised and used to eliminate or substantially reduce this effect. The use of digital monoplotting techniques did not produce as good or as complete a rectification as expected due to the difficulties experienced with the interpretation of the terrain objects recorded on the SAR images. These result partly from the constraints in imaging direction that are an inherent feature of SAR imaging and which make the detection and interpretation of certain objects on an SAR image rather arbitrary. A further difficulty is the presence of background clutter on all the Seasat SAR images but which is especially noticeable on the optically processed images tested. At the present stage of the development and application of satellite SAR imagery for mapping, the limitations are centered around shortcomings in the image resolution and quality rather than the geometric characteristics of the imagery or the rectification techniques which have been devised and implemented for mapping purposes.
49

1D morphodynamical modelling of swash zone beachface evolution

Zhu, Fangfang January 2012 (has links)
The beachface evolution in the swash zone under different single swash events is investigated by fully coupled simulations. Two fully coupled models (bed-load-only and combined load models) comprising the one dimensional shallow water equations and bed evolution equation are developed. The two coupled systems are solved by the specified time interval method of characteristics (STI MOC) (Kelly and Dodd, 2009, 2010), which can resolve shocks very accurately. The fully coupled bed-load-only simulations with six different sediment transport formulae for a single Peregrine and Williams (2001) (PW01) swash over an erodible plane beach all yield net erosion all over the swash zone. Consistent with Kelly and Dodd (2010), however, full coupling yields significantly less erosion for all the q=q(u) (q instantaneous sediment flux and u water velocity) formulae compared to the equivalent uncoupled results. It is also shown that including a dependence on h (water depth) in q can result in net deposition in the upper swash, and that with such a formula q the shoreline motion over a plane mobile beach is ballistic in the uprush. Bed shear stress described by the Chezy law is further included in fully coupled simulations, and much reduced maximum inundation and net offshore sediment transport are predicted both for q=q(u) and q=q(h,u). Although the net sediment flux at x=0 under one PW01 event is still offshore, deposition in the middle or upper swash may be predicted when bed shear stress is included. The fully coupled bed-load-only simulation with q=q(u) for a single Hibberd and Peregrine (1979) (HP79) swash event predicts considerable deposition in the swash zone. A backwash bore develops, associated with which a bed step forms when the shoreline catches up with the backwash bore. The subsequent shoreline movement is obtained by the Riemann solution for a wet-dry dam-break problem with a bed step. A bed step also occurs under a solitary wave simulation; its height is much larger than that under the HP79 simulation. Bed step height is found to depend largely on the water depth on the seaward side of the step, which is related to the swash event and the step position. The PW01 and HP79 swash events are also examined by the combined load model. Results show that suspended load results in deposition in the upper swash and erosion in the lower swash. However, pre-suspended sediment results in deposition in the lower swash, implying that net bed change due to suspended load in the lower swash could be depositional. The inclusion of suspended load has much smaller effect on the maximum inundation and swash hydrodynamics than bed load. The inclusion of bed load reduces the maximum inundation significantly; importantly, bed load results in the formation of a bed step and dominates the beach change near the bed step even when suspended load is dominant in the overall beach change.
50

A hermite radial basis functions control volume numerical method to simulate transport problems

Orsini, Paolo January 2009 (has links)
This thesis presents a Control Volume (CV) method for transient transport problems where the cell surface fluxes are reconstructed using local interpolation functions that besides interpolating the nodal values of the field variable, also satisfies the governing equation at some auxiliary points in the interpolation stencils. The interpolation function relies on a Hermitian Radial Basis Function (HRBF) mesh less collocation approach to find the solution of auxiliary local boundary/initial value problems, which are solved using the same time integration scheme adopted to update the global control volume solution. By the use of interpolation functions that approximate the governing equation, a form of analytical upwinding scheme is achieved without the need of using predefined interpolation stencils according to the magnitude and direction of the local advective velocity. In this way, the interpolation formula retains the desired information about the advective velocity field, allowing the use of centrally defined stencils even in the case of advective dominant problems. This new CV approach, which is referred to as the CV-HRBF method, is applied to a series of transport problems characterised by high Peclet number. This method is also more flexible than the classical CV formulations because the boundary conditions are explicitly imposed in the interpolation formula, without the need for artificial schemes (e.g. utilising dummy cells). The flexibility of the local meshless character of the CVHRBF is shown in the modelling of the saturated zone of the unconfined aquifer where a mesh adapting algorithm is needed to track the phreatic surface (moving boundary). Due to the use of a local RBF interpolation, the dynamic boundary condition can be applied in an arbitrary number of points on the phreatic surface, independently from the mesh element. The robustness of the Hermite interpolation is exploited to formulate a non-overlapping non-iterative multi-domain scheme where physical matching conditions are satisfied locally, i.e. imposing the continuity of the function and flux at the sub-domain interface.

Page generated in 0.0637 seconds