Spelling suggestions: "subject:"colearning"" "subject:"bylearning""
1 |
Robust Reinforcement Learning in Continuous Action/State SpaceGrönland, Axel, Eriksson Möllerstedt, Viktor January 2020 (has links)
In this project we aim to apply Robust Reinforce-ment Learning algorithms, presented by Doya and Morimoto [1],[2], to control problems. Specifically, we train an agent to balancea pendulum in the unstable equilibrium, which is the invertedstate.We investigate the performance of controllers based on twodifferent function approximators. One is quadratic, and the othermakes use of a Radial Basis Function neural network. To achieverobustness we will make use of an approach similar toH∞control, which amounts to introducing an adversary in the controlsystem.By changing the mass of the pendulum after training, we aimedto show as in [2] that the supposedly robust controllers couldhandle this disruption better than its non-robust counterparts.This was not the case. We also added a random disturber signalafter training and performed similar tests, but we were againunable to show robustness. / I detta projekt applicerar vi Robust Rein- forcement Learning (RRL) algoritmer, framtagna av Doya och Morimoto [1], [2], på reglerproblem. Målet var att träna en agent att balansera en pendel i det instabila jämviktsläget; det inverterade tillståndet. Vi undersökte prestandan hos regulatorer baserade på två value function approximators. Den ena är kvadratisk och den andra en Radial Basis Function neuralt nätverk. För att skapa robusthet så använder vi en metod som är ekvivalent med H∞ - reglering, som innebär att man introducerar en motståndare i reglersystemet. Genom att ändra pendelns massa efter träning, hoppas vi att som i [2] kunna visa att den förment robusta regulatorn klarar av denna störning bättre än sin icke-robusta mostvarighet. Detta var inte fallet. Vi lade även till en slumpmässig störsignal efter träning och utförde liknande tester, men lyckades inte visa robusthet i detta fall heller. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
|
2 |
Rôles complémentaires du cortex préfrontal et du striatum dans l'apprentissage et le changement de stratégies de navigation basées sur la récompense chez le ratKhamassi, Mehdi 26 September 2007 (has links) (PDF)
Les mammifères ont la capacité de suivre différents comportements de navigation, définis comme des " stratégies " ne faisant pas forcément appel à des processus conscients, suivant la tâche spécifique qu'ils ont à résoudre. Dans certains cas où un indice visuel indique le but, ils peuvent suivre une simple stratégie stimulus-réponse (S-R). À l'opposé, d'autres tâches nécessitent que l'animal mette en oeuvre une stratégie plus complexe basée sur l'élaboration d'une certaine représentation de l'espace lui permettant de se localiser et de localiser le but dans l'environnement. De manière à se comporter de façon efficace, les animaux doivent non seulement être capables d'apprendre chacune de ces stratégies, mais ils doivent aussi pouvoir passer d'une stratégie à l'autre lorsque les exigences de l'environnement changent. La thèse présentée ici adopte une approche pluridisciplinaire - comportement, neurophysiologie, neurosciences computationnelles et robotique autonome - de l'étude du rôle du striatum et du cortex préfrontal dans l'apprentissage et l'alternance de ces stratégies de navigation chez le rat, et leur application possible à la robotique. Elle vise notamment à préciser les rôles respectifs du cortex préfrontal médian (mPFC) et de différentes parties du striatum (DLS :dorsolateral ; VS : ventral) dans l'ensemble de ces processus, ainsi que la nature de leurs interactions. Le travail expérimental effectué a consisté à : (1) étudier le rôle du striatum dans l'apprentissage S-R en : (a) analysant des données électrophysiologiques enregistrées dans le VS chez le rat pendant une tâche de recherche de récompense dans un labyrinthe en croix ; (b) élaborant un modèle Actor-Critic de l'apprentissage S-R où le VS est le Critic qui guide l'apprentissage, tandis que le DLS est l'Actor qui mémorise les associations S-R. Ce modèle est étendu à la simulation robotique et ses performances sont comparées avec des modèles Actor-Critic existants dans un labyrinthe en croix virtuel ; (2) Dans un deuxième temps, le rôle du striatum dans l'apprentissage de stratégies de type localisation étant supposé connu, nous nous sommes focalisés sur l'étude du rôle du mPFC dans l'alternance entre stratégies de navigation, en effectuant des enregistrements électrophysiologiques dans le mPFC du rat lors d'une tâche requiérant ce type d'alternance. Les principaux résultats de ce travail suggèrent que : (1) dans le cadre S-R : (a) comme chez le singe, le VS du rat élabore des anticipations de récompense cohérentes avec la théorie Actor-Critic ; (b) ces anticipations de récompense peuvent être combinées avec des cartes auto-organisatrices dans un modèle Actor-Critic obtenant de meilleures performances que des modèles existants dans un labyrinthe en croix virtuel, et disposant de capacités de généralisation intéressantes pour la robotique autonome ; (2) le mPFC semble avoir un rôle important lorsque la performance de l'animal est basse et qu'il faut apprendre une nouvelle stratégie. D'autre part, l'activité de population dans le mPFC change rapidement, en correspondance avec les transitions de stratégies dans le comportement du rat, suggérant une contribution de cette partie du cerveau dans la sélection flexible des stratégies comportementales. Nous concluons ce manuscrit par une discussion de nos résultats dans le cadre de travaux précédents en comportement, électrophysiologie et modélisation. Nous proposons une nouvelle architecture du système préfronto-striatal chez le rat dans laquelle des sous-parties du striatum apprennent différentes stratégies de navigation, et où le cortex préfrontal médian décide à chaque instant quelle stratégie devra régir le comportement du rat.
|
Page generated in 0.2775 seconds