• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33863
  • 12650
  • 10150
  • 1114
  • 799
  • 552
  • 386
  • 323
  • 323
  • 323
  • 323
  • 323
  • 321
  • 238
  • 235
  • Tagged with
  • 68476
  • 33381
  • 16814
  • 16188
  • 13173
  • 13149
  • 13048
  • 10680
  • 5420
  • 4633
  • 4520
  • 4361
  • 3894
  • 3874
  • 3585
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Theoretical Investigations of Compressed Materials

Luo, Wei January 2010 (has links)
The use of high pressure as a tool to design new materials as well as to investigatematerials properties has become increasingly important during last one decade. The maingoal of the present thesis is to enhance the significance of the high pressure method as aquantitative tool in solid state investigations. Virtually all of the properties of solids aredirectly determined by their electronic structure. Similarly, the changes in the propertiesof solids under pressure are determined by the changes in the electronic structure underpressure. We have attempted to provide a comprehensive description of the resulting theoryin a electronic structure and the properties of condensed matter. The theoretical basis for these investigations is the density functional theory, in combinationwith ab initio method. The study of pressure induced phase transitions for thecompounds of CaF2, Cr2GeC, Ti3SiC2, as well as V at 0 K are presented. The latticeparameters, the phase transition pressures, the equation of states, the electronic structureshave been calculated and shown a good agreement with experimental results. A lattices dynamic study of the body center cubic (bcc) Fe under high pressure andhigh temperature is presented. The bcc iron could dynamical stabilize in the Earth innercore conditions. The unusual phase transition of bcc V under high pressure is investigatedand it is shown that the driving mechanism is electron-phonon interaction. Finally, a method based on the LDA+U approach has been applied to study spin statetransition in FeCO3. Our results show that magnetic entropy play a significant role in spinstate transition. / QC 20100920
292

Contributions to Modelling and Visualisation of Multibody Systems Simulations with Detailed Contact Analysis

Siemers, Alexander January 2010 (has links)
The steadily increasing performance of modern computer systems is having a large influence on simulation technologies. It enables increasingly detailed simulations of larger and more comprehensive simulation models. Increasingly large amounts of numerical data are produced by these simulations. This thesis presents several contributions in the field of mechanical system simulation and visualisation. The work described in the thesis is of practical relevance and results have been tested and implemented in tools that are used daily in the industry i.e., the BEAST (BEAring Simulation Tool) tool box. BEAST is a multibody system (MBS) simulation software with special focus on detailed contact calculations. Our work is primarily focusing on these types of systems. focusing on these types of systems. Research in the field of simulation modelling typically focuses on one or several specific topics around the modelling and simulation work process. The work presented here is novel in the sense that it provides a complete analysis and tool chain for the whole work process for simulation modelling and analysis of multibody systems with detailed contact models. The focus is on detecting and dealing with possible problems and bottlenecks in the work process, with respect to multibody systems with detailed contact models. The following primary research questions have been formulated: How to utilise object-oriented techniques for modelling of multibody systems with special reference tocontact modelling? How to integrate visualisation with the modelling and simulation process of multibody systems withdetailed contacts. How to reuse and combine existing simulation models to simulate large mechanical systems consistingof several sub-systems by means of co-simulation modelling? Unique in this work is the focus on detailed contact models. Most modelling approaches for multibody systems focus on modelling of bodies and boundary conditions of such bodies, e.g., springs, dampers, and possibly simple contacts. Here an object oriented modelling approach for multibody simulation and modelling is presented that, in comparison to common approaches, puts emphasis on integrated contact modelling and visualisation. The visualisation techniques are commonly used to verify the system model visually and to analyse simulation results. Data visualisation covers a broad spectrum within research and development. The focus is often on detailed solutions covering a fraction of the whole visualisation process. The novel visualisation aspect of the work presented here is that it presents techniques covering the entire visualisation process integrated with modeling and simulation. This includes a novel data structure for efficient storage and visualisation of multidimensional transient surface related data from detailed contact calculations. Different mechanical system simulation models typically focus on different parts (sub-systems) of a system. To fully understand a complete mechanical system it is often necessary to investigate several or all parts simultaneously. One solution for a more complete system analysis is to couple different simulation models into one coherent simulation. Part of this work is concerned with such co-simulation modelling. Co-simulation modelling typically focuses on data handling, connection modelling, and numerical stability. This work puts all emphasis on ease of use, i.e., making mechanical system co-simulation modelling applicable for a larger group of people. A novel meta-model based approach for mechanical system co-simulation modelling is presented. The meta-modelling process has been defined and tools and techniques been created to fully support the complete process. A component integrator and modelling environment are presented that support automated interface detection, interface alignment with automated three-dimensional coordinate translations, and three dimensional visual co-simulation modelling. The integrated simulator is based on a general framework for mechanical system co-simulations that guarantees numerical stability.
293

Probabilistic Fault Diagnosis with Automotive Applications

Pernestål, Anna January 2009 (has links)
The aim of this thesis is to contribute to improved diagnosis of automotive vehicles. The work is driven by case studies, where problems and challenges are identified. To solve these problems, theoretically sound and general methods are developed. The methods are then applied to the real world systems. To fulfill performance requirements automotive vehicles are becoming increasingly complex products. This makes them more difficult to diagnose. At the same time, the requirements on the diagnosis itself are steadily increasing. Environmental legislation requires that smaller deviations from specified operation must be detected earlier. More accurate diagnostic methods can be used to reduce maintenance costs and increase uptime. Improved diagnosis can also reduce safety risks related to vehicle operation. Fault diagnosis is the task of identifying possible faults given current observations from the systems. To do this, the internal relations between observations and faults must be identified. In complex systems, such as automotive vehicles, finding these relations is a most challenging problem due to several sources of uncertainty. Observations from the system are often hidden in considerable levels of noise. The systems are complicated to model both since they are complex and since they are operated in continuously changing surroundings. Furthermore, since faults typically are rare, and sometimes never described, it is often difficult to get hold of enough data to learn the relations from. Due to the several sources of uncertainty in fault diagnosis of automotive systems, a probabilistic approach is used, both to find the internal relations, and to identify the faults possibly present in the system given the current observations. To do this successfully, all available information is integrated in the computations. Both on-board and off-board diagnosis are considered. The two tasks may seem different in nature: on-board diagnosis is performed without human integration, while the off-board diagnosis is mainly based on the interactivity with a mechanic. On the other hand, both tasks regard the same vehicle, and information from the on-board diagnosis system may be useful also for off-board diagnosis. The probabilistic methods are general, and it is natural to consider both tasks. The thesis contributes in three main areas. First, in Paper 1 and 2, methods are developed for combining training data and expert knowledge of different kinds to compute probabilities for faults. These methods are primarily developed with on-board diagnosis in mind, but are also applicable to off-board diagnosis. The methods are general, and can be used not only in diagnosis of technical system, but also in many other applications, including medical diagnosis and econometrics, where both data and expert knowledge are present. The second area concerns inference in off-board diagnosis and troubleshooting, and the contribution consists in the methods developed in Paper 3 and 4. The methods handle probability computations in systems subject to external interventions, and in particular systems that include both instantaneous and non-instantaneous dependencies. They are based on the theory of Bayesian networks, and include event-driven non-stationary dynamic Bayesian networks (nsDBN) and an efficient inference algorithm for troubleshooting based on static Bayesian networks. The framework of nsDBN event-driven nsDBN is applicable to all kinds of problems concerning inference under external interventions. The third contribution area is Bayesian learning from data in the diagnosis application. The contribution is the comparison and evaluation of five Bayesian methods for learning in fault diagnosis in Paper 5. The special challenges in diagnosis related to learning from data are considered. It is shown how the five methods should be tailored to be applicable to fault diagnosis problems. To summarize, the five papers in the thesis have shown how several challenges in automotive diagnosis can be handled by using probabilistic methods. Handling such challenges with probabilistic methods has a great potential. The probabilistic methods provide a framework for utilizing all information available, also if it is in different forms and. The probabilities computed can be combined with decision theoretic methods to determine the appropriate action after the discovery of reduced system functionality due to faults.
294

Stimuli Generation Techniques for On-Chip Mixed-Signal Test

Ahmad, Shakeel January 2010 (has links)
With increased complexity of the contemporary very large integrated circuits the need for onchip test addressing not only the digital but also analog and mixed-signal RF blocks has emerged. The standard production test has become more costly and the instrumentation is pushed to its limits by the leading edge integrated circuit technologies. Also the chip performance for high frequency operation and the area overhead appear a hindrance in terms of the test access points needed for the instrumentation-based test. To overcome these problems, test implemented on a chip can be used by sharing the available resources such as digital signal processing (DSP) and A/D, D/A converters to constitute a built-in-self-test. In this case, the DSP can serve both as a stimuli generator and response analyzer. Arbitrary test signals can be achieved using DSP. Specifically, the ΣΔ modulation technique implemented in software is useful to encode a single- or two-tone stimulus as a onebit sequence to generate a spectrally pure signal with a high dynamic range. The sequence can be stored in a cyclic memory on a chip and applied to the circuit under test using a buffer and a simple reconstruction filter. In this way ADC dynamic test for harmonic and intermodulation distortion is carried out in a simple setup. The FFT artifacts are avoided by careful frequency planning for low-pass and band-pass ΣΔ encoding technique. A noise shaping based on a combination of low- and band-pass ΣΔ modulation is also useful providing a high dynamic range for measurements at high frequencies that is a new approach. However, a possible asymmetry between rise and fall time due to CMOS process variations in the driving buffer results in nonlinear distortion and increased noise at low frequencies. A simple iterative predistortion technique is used to reduce the low frequency distortion components by making use of an on-chip DC calibrated ADC that is another contribution of the author. Some tests, however, like the two-tone RF test that targets linearity performance of a radio receiver, require test stimuli based on a dedicated hardware. For the measurement of the thirdor second-intercept point (IP3/IP2) a spectrally clean stimulus is essential. Specifically, the second- or third-order harmonic or intermodulation products of the stimulus generator should be avoided as they can obscure the test measurement. A challenge in this design is the phase noise performance and spurious tones of the oscillators, and also the distortion-free addition of the two tones. The mutual pulling effect can be minimized by layout isolation techniques. A new two-tone RF generator based on a specialized phase-locked loop (PLL) architecture is presented as a viable solution for IP3/IP2 on-chip test. The PLL provides control over the frequency spacing of two voltage controlled oscillators. For the two-tone stimulus a highly linear analog  adder is designed to limit distortion which could obscure the IP3 test. A specialized feedback circuit in the PLL is proposed to overcome interference by the reference spurs. The circuit is designed using 65 nm CMOS process. By using a fine spectral resolution the observed noise floor can be reduced to enable the measurement of second- or third-order intermodulation product tones. This also reflects a tradeoff between the test time and the test performance. While the test time to collect the required number of samples can be of milliseconds the number of samples need not be excessive, since the measurements are carried out at the receiver baseband, where the required sampling frequency is relatively low.
295

Mobilized Thermal Energy Storage for Heat Recovery for Distributed Heating

Wang, Weilong January 2010 (has links)
Conventional energy sources—oil and electricity—dominate the heat supply market. Due to their rising costs and their negative environmental effects on global climate change, it is necessary to develop an alternative heat supply system featuring low cost, high energy efficiency and environment friendliness. At present, it is often challenging to supply heat to detached buildings due to low energy efficiency and high distribution cost. Meanwhile, significant amounts of industrial waste and excess heat are released into the environment without recycling due to the difficulty of matching time and space differences between suppliers and end users. Phase change materials (PCMs), with the advantages of being storable and transportable, offer a solution for delivering that excess heat from industrial plants to detached buildings in sparse, rural areas.   The objective of this thesis is to study PCMs and latent thermal energy storage (LTES) technology, and to develop a mobilized thermal energy storage (M-TES) system that can use industrial waste or excess heat for heat recovery and distribution to areas in need.   Organic PCMs were chosen for study because they are non-toxic and non-corrosive, and they exhibit no phase separation and little sub-cooling when compared to inorganic PCMs. Two major issues including leakage of liquid PCMs and low thermal conductivity. Polyethylene glycol (PEG) was chosen to help analyze the thermal behavior of organic PCMs and PEG-based form-stable composites. To overcome the issue of low thermal conductivity, modified aluminum nitride (AlN) powder was added to the composites. Increased thermal conductivity traded off decreased latent heat. The PEG/EG composite, prepared by mixing the melted PEG into an expanded graphite (EG) matrix showed good thermal performance due to its large enthalpy and high thermal conductivity.   To make a systematic study of the M-TES system, a compact lab-scale system was designed and built. Characteristics of PCM were studied, and the performance of the direct-contact TES container was investigated. A case study using an M-TES system to deliver heat from a combined heat and power (CHP) plant to a small village was conducted. A technical and economic feasibility study was conducted for an integrated heat supply system using the M-TES system. In addition, the options for charging a TES container at a CHP plant were analyzed and compared from the viewpoints of power output, heat output and incomes. / Ångpanneföreningens Forskningsstiftelse (ÅF)
296

Inverse Monte Carlo for estimation of scattering and absorption in liquid optical phantoms

Karlsson, Hanna, Fredriksson, Ingemar, Larsson, Marcus, Strömberg, Tomas January 2012 (has links)
A spectroscopic probe with multiple detecting fibers was used for quantifying absorption and scattering in liquid optical phantoms. The phantoms were mixtures of Intralipid and red and blue food dyes. Intensity calibration for the detecting fibers was undertaken using either a microsphere suspension (absolute calibration) or a uniform detector illumination (relative calibration between detectors). Two different scattering phase functions were used in an inverse Monte Carlo algorithm. Data were evaluated for residual spectra (systematic deviations and magnitude) and accuracy in estimation of scattering and absorption. Spectral fitting was improved by allowing for a 10% intensity relaxation in the optimization algorithm. For a multi-detector setup, non-systematic residual spectrum was only found using the more complex Gegenbauer-kernel phase function. However, the choice of phase function did not influence the accuracy in the estimation of absorption and scattering. Similar estimation accuracy as in the multi-detector setup was also obtained using either two relative calibrated detectors or one absolute calibrated detector at a fiber separation of 0.46 mm. / <p>Funding Agencies|VINNOVA||Perimed AB|2008-00149|ResearchGrow program|2011-03074|European Union||Linkoping University through the Center for Excellence NIMED-CBDP (Center for Biomedical Data Processing)||</p>
297

A Real Time Light Probe

Unger, Jonas, Gustavson, Stefan, Ollila, Mark, Johannesson, Mattias January 2004 (has links)
We present a novel system capable of capturing high dynamic range (HDR) Light Probes at video speed. Each Light Probe frame is built from an individual full set of exposures, all of which are captured within the frame time. The exposures are processed and assembled into a mantissa-exponent representation image within the camera unit before output, and then streamed to a standard PC. As an example, the system is capable of capturing Light Probe Images with a resolution of 512x512 pixels using a set of 10 exposures covering 15 f-stops at a frame rate of up to 25 final HDR frames per second. The system is built around commercial special-purpose camera hardware with on-chip programmable image processing logic and tightly integrated frame buffer memory, and the algorithm is implemented as custom downloadable microcode software.
298

Making physics visible and learnable through interactive lecture demonstrations

Bernhard, Jonte, Lindwall, Oskar, Engkvist, Jonas, Zhu, Xia, Stadig Degerman, Mari January 2007 (has links)
No description available.
299

Iris Pupil Detection by Structure Tensor Analysis

Alonso-Fernandez, Fernando, Bigun, Josef January 2011 (has links)
This paper present a pupil detection/segmentation algorithm for iris images based on Structure Tensor analysis. Eigenvalues of the structure tensor matrix have been observed to be high in pupil boundaries and specular reflections of iris images. We exploit this fact to detect the specular reflections region and the boundary of the pupil in a sequential manner. Experimental results are given using the CASIA-IrisV3-Interval database (249 contributors, 396 different eyes, 2,639 iris images). Results show that our algorithm works specially well in detecting the specular reflections (98.98% success rate) and pupil boundary detection is correctly done in 84.24% of the images.
300

Real-time communication support for cooperative, infrastructure-based traffic safety applications

Böhm, Annette, Jonsson, Magnus January 2011 (has links)
The implementation of ITS (Intelligent Transport Systems) services offers great potential to improve the level of safety, efficiency and comfort on our roads. Although cooperative traffic safety applications rely heavily on the support for real-time communication, the Medium Access Control (MAC) mechanism proposed for the upcoming IEEE 802.11p standard, intended for ITS applications, does not offer deterministic real-time support, that is, the access delay to the common radio channel is not upper bounded. To address this problem, we present a framework for a vehicle-to-infrastructure-based (V2I) communication solution extending IEEE 802.11p by introducing a collision-free MAC phase assigning each vehicle an individual priority based on its geographical position, its proximity to potential hazards and the overall road traffic density. Our solution is able to guarantee the timely treatment of safety-critical data, while minimizing the required length of this real-time MAC phase and freeing bandwidth for best-effort services (targeting improved driving comfort and traffic efficiency). Furthermore, we target fast connection setup, associating a passing vehicle to an RSU (Road Side Unit), and proactive handover between widely spaced RSUs. Our real-time MAC concept is evaluated analytically and by simulation based on a realistic task set from a V2I highway merge assistance scenario. / <p>Copyright © 2011 Annette Böhm and Magnus Jonsson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>

Page generated in 0.0544 seconds