471 |
The Effects of Long-Term Isothermal Ageing on the Microstructure of HP-Nb and HP-NbTi AlloysBuchanan, Karl Graham January 2013 (has links)
High alloy Fe-Cr-Ni-C austenitic stainless steels have become the principal alloys for use in steam-methane reforming furnaces within the petrochemical industry. Each furnace contains a large array of vertically oriented centrifugally cast tubes through which a mixture of methane and steam is flowed across a nickel-oxide catalyst in order to obtain a mixture of hydrogen, carbon monoxide and carbon dioxide and water commonly known as synthesis gas (or syngas). Generally, the tubes operate at temperatures between 850-1050°C, internal pressures between 1-3.5MPa and are expected to withstand service lives in excess of 100,000 hours. The combination of high temperatures and moderate stresses causes creep to be the dominant failure mechanism experienced by these tubes in service.
The HP austenitic alloys are the latest in a series of heat resisting (H-series) stainless steels developed to provide high temperature strength, ductility, and corrosion resistance in the oxygen, carbon, and sulphur rich environments typical of these furnaces. Extensive work has been carried out to optimise HP alloys’ microstructure in order to maximise the alloy’s creep resistance. Strength increases have largely been realized through the use of niobium and/or titanium additions, which modify the primary precipitates (formed during solidification) and secondary precipitates (formed during exposure to the service temperatures). These strength increases have typically been observed during laboratory accelerated creep testing of the ‘modified’ HP alloys where the temperature and/or stress is increased to achieve failure of the material within reasonable time period (typically between 1000-2000 hours). However, since the duration of typical accelerated creep tests often represent less than 2% of the tubes’ actual service life, uncertainty surrounds the validity of using this testing method as the basis to predict the tubes actual service life. This uncertainty has largely arisen due to the significant microstructural evolution that occurs within these alloys during prolonged service exposure and is not captured within the typical accelerated testing time-frame.
In the present work, the microstructures of HP alloys modified with a single addition of niobium (HP-Nb) and dual additions of niobium and titanium (HP-NbTi) have been characterized in the as-cast condition and after long-term (10,000 hours) isothermal laboratory ageing at 1000, 1050 and 1100°C. The main focus of this study is to provide further insight into the microstructural features that increase the HP-NbTi alloy’s creep resistance in comparison to the HP-Nb alloy when performing accelerated creep testing and determine if these microstructural features remain stable during long-term ageing. The microstructure and crystallography of the primary and secondary precipitates in each alloy have been studied in detail using light optical microscopy, high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (EBSD, SAD and CBED), Powder X-ray Diffraction and energy dispersive X-ray spectroscopy. Specific attention has been paid to the niobium-rich and niobium-titanium-rich phases that form as a direct result of HP alloy’s modification with niobium and titanium.
The current research is part of a wider project conducted in collaboration with Quest Integrity Group Ltd. (Wellington, New Zealand) that aims to characterize the microstructural and mechanical properties of the HP-Nb and HP-NbTi alloys during long-term service exposure. The microstructural characterization presented in this thesis will subsequently be used by Quest Integrity Group to build a comprehensive understanding of the relationship between HP-Nb and HP-NbTi alloy’s microstructure and creep properties. This understanding will allow Quest Integrity Group to more accurately predict the service life of HP-Nb and HP-NbTi alloy tubes within steam-methane reforming furnaces.
|
472 |
Experiments on polarized and unpolarized dilute '3He-'4He solutionsNichols, Timothy Robert January 1989 (has links)
No description available.
|
473 |
A modelling study of interannual variability in the middle atmosphereIbbotson, Simon David January 2000 (has links)
No description available.
|
474 |
Estimation of three-dimensional temperature fields from a limited number of transient temperature measurements during hyperthermia.Clegg, Scott Tom. January 1988 (has links)
In this dissertation, a new reconstruction algorithm to estimate the complete temperature field during hyperthermia is developed which relies upon a limited amount of transient measured temperature data. The predictive capabilities of this new algorithm are then systematically studied; first using one-dimensional simulated treatments, then using three-dimensional simulated treatments, and finally applying it to hyperthermia treatments of normal canine thighs. It was found that this new algorithm predicts the complete temperature fields more accurately and robustly than the steady-state approach. In particular, it can better predict the complete temperature fields in situations where the number of unknown blood perfusion parameters are greater than the number of available temperature sensors. It was also found that the steady-state temperature field could be estimated to within 1°C if there was no measurement noise, no model mismatch, and as few as three measurement locations for seven perfusion zones. The addition of measurement noise degraded the performance of this estimation algorithm especially when the number of measurement locations was small. It was found that use of Tikhonov regularization of order zero significantly improved the performance of the algorithm and that there was an optimal choice for the regularization parameter. For the animal experiments, normal canine thighs were instrumented with one-hundred twelve thermocouples and heated to steady-state using a 6 cm planar ultrasound transducer operating at 0.5 MHz: then the power was turned off and the transient cool down temperature data was stored for later use by the reconstruction algorithm. Only a subset of the one-hundred twelve measurements was used as input to the reconstruction algorithm. The remaining measurements were used to compare the results of the reconstruction algorithm with the true temperatures. The results showed that in general the predicted perfusion and reconstructed temperature field did not change significantly as sensors were removed. However, the error was quite large for some of the situations studied particularly when only twenty-seven piecewise constant regions of perfusion were used. Increasing the number of perfusion regions reduced this error suggesting that model mismatch had contributed significantly to the error.
|
475 |
MEAN TURBULENCE STRUCTURE IN STRONGLY HEATED AIR FLOWS.SHEHATA, AHMED-MOHSEN TAWFICK MOHAMED. January 1984 (has links)
Measurements of mean velocity and mean temperature fields and wall parameters for air flowing in a smooth, vertical tube at low entry Reynolds numbers are presented for heating with constant wall heat flux along the heated length. Two entry Reynolds numbers of approximately 6000 and 4000 were employed with three heating rates, q('+) = q('w'')/ (Gc(,p,i) T(,i)), of approximately 0.0018, 0.0035 and 0.0045. The flow development was measured by obtaining internal profiles along the heated length at axial locations from x/D = 3.17 to x/D = 24.54. An adiabatic entry of 50 diameters preceded the heated region. The three heating rates caused slight, large and severe property variation of the air. The highest heating rate was found to cause significant buoyancy effects. The internal measurements were obtained using constant temperature hot-wire anemometry and resistance thermometry for velocity and temperature, respectively, employing a single short wire probe. The technique developed and employed for the use of a single short hot wire in velocity measurements in non-isothermal flows is presented. The measurements are compared to numerical predictions employing two simple versions of the van Driest mixing length turbulence model. In general, both models agreed with the measurements reasonably well, but for the higher heating rates neither model was completely satisfactory in predicting the velocity profiles. When the buoyancy parameter reached 0.3, the peak velocity occurred in the wall region rather than at the tube centerline. Typically, the Nusselt number was overpredicted by 10% for x/D > 14 and, consequently, the wall temperature was underpredicted by about 7%.
|
476 |
Effect of high temperature on lettuce seed developmentTakahashi, Junji, 1951- January 1988 (has links)
More vegetable seeds are needed for developing countries to produce more vegetables. However, high temperature in these areas limits vegetable seed production. Leaf lettuce (Lactuca sativa L.) was grown in growth chambers at 21°C and exposed to different temperatures (28, 35, 38 and 42°C) for different exposure times (1, 4 and 7 hours) when flowers were at seven stages of development near anthesis.
|
477 |
Resorption cycle heat pump with ammonia-water working fluidMolyneaux, Glenn Arthur January 2000 (has links)
No description available.
|
478 |
Effects of environmental and genetic stress on life history and wing fluctuating asymmetry in mosquitoesMpho, Mandla January 2000 (has links)
No description available.
|
479 |
An investigation into the use of MTDSC as a technique for the characterisation of pharmaceutical materialsHill, Vivienne Lucy January 1999 (has links)
No description available.
|
480 |
Effects of regional cooling on thermal balance in humansMaidment, Graeme January 1996 (has links)
No description available.
|
Page generated in 0.1028 seconds