• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The investigation of the biotransformation products formed by Cunninghamella elegans for different classes of drugs by the use of UPLC Q-TOF MS

Thorén, Hanna January 2015 (has links)
The fungus Cunninghamella elegans has in many studies shown to have abiotransformation similar to the metabolism of mammals. If the biotransformation isgeneral, it enables the production of metabolites by the fungus and the use asreference material. The purpose of the project were to examine whether themetabolic process of C. elegans is general, with respect to the formation ofglucosides, and can be applied to different classes of drugs. During the project, theanalyses were performed on a UPLC Q-TOF, run in both MSE and MSMS mode. Themobile phase used consisted of MeOH and 0.1 % formic acid in MQ water. Toincrease the concentration of possible glucosides, the samples were subjected to anacidic or alkaline SPE. Glucosides were detected in the fungal incubates of diclofenac,buprenorphine, norbuprenorphine and oxazepam. For diclofenac, besides twodifferent glucosides (diclofenac glucoside and hydroxylated diclofenac glucoside), ahydroxylated metabolite and a hydroxylated metabolite conjugated with sulfate werediscovered. In the samples containing buprenorphine, the phase I metabolitenorbuprenorphine was also encountered. Further, in the fungal incubates ofdexamethasone a defluorinated metabolite was identified, which is a metabolicpathway never before described for C. elegans.ISSN: 1650

Page generated in 0.3116 seconds