21 |
Geogrids in cold climate : Temperature controlled tensile tests & Half-scale installation tests at different temperaturesBonthron, Björn, Jonsson, Christian January 2017 (has links)
Due to the findings of extensive damage on geogrids used in a road embankment in northern Sweden, the Swedish Transport Administration (TRV) started to investigate the reason of these damages. Since the geogrids were installed at low temperature, below 0°C, it was suspected that the damages were connected the low temperature. To analyse whether low temperatures have an influence on the extent of installation damages, both a half-scale setup and temperature controlled tensile tests have been carried out on geogrids. In total five different types of geogrids have been tested; 3 extruded polypropylene geogrids, 1 woven PET geogrid, and 1 welded PET geogrid. All geogrids had an aperture size of approximately 35 mm and specified tensile strength of approximately 40 kN/m. The Half-scale tests was conducted by building a small road embankment inside a freeze container, at the Luleå University of Technology (LTU). The embankment contained crushed aggregate, type 0-70 mm, and geogrids. The purpose of the half-scale test was to simulate installation of geogrids at different temperatures and thereby investigate whether low temperatures have an influence on the rate of installation damages. The half-scale test was done for each type of geogrid at the temperatures: +20°C, -20°C and -30°C. First, the geogrid was covered by 150 mm of crushed aggregate. Then a vibratory plate (160 kg) was used to compact the crushed aggregate. After each installation, the crushed aggregate was removed carefully by vacuum suction. The geogrid was removed and then analysed by visual control and tensile tests conducted according to ISO 10319:2008 (wide width tensile test). Results from the half-scale tests indicate that 2 out of 5 of the tested geogrids were affected by the testing procedure. The results indicate that: - one of the geogrids of polyprophylene (here referred to as G2) was more damaged at lower temperatures compared to installation at +20° C. - the geogrid of woven PET (here referred to as G5) was less damaged at lower temperatures compared to installation at +20° C. Results for the other geogrids are either inconsistent or shows no significant variation of the measured parameters as function of temperature. Hence, these results cannot be interpreted as damage during installation. Temperature controlled tensile tests were done by tensile testing single strands from the geogrids to failure, inside a temperature controlled chamber. The purpose of these tests was to investigate how the strength properties of the geogrids are affected by low temperature. The test was repeated 5 times for each geogrid and temperature (+20°C, 0°C, -10°C and -20°C). Force and strain was measured during the tests. The results from the temperature controlled tensile tests show that the maximum strain decreases with lower temperature for all tested geogrids. The maximum strain decreased by 16% - 49% when the temperature dropped from +20°C to -20°C. The results show that the tensile strength increases with lower temperature for all tested geogrids except for the welded PET geogrid (here referred to as G1). For G1 the tensile strength decreased by approximately 7% at a temperature drop from +20°C to -20°C. For the woven PET geogrid (G5) and the polypropylene geogrids (G2-G3) the tensile strength increased between 13%-45% at a temperature drop from +20°C to -20°C. The E-modulus increased at lower temperature for all tested geogrids. The secant E-modulus at 2% strain increased by 13%-71% at a temperature drop from +20°C to -20°C. Summarized conclusions from the tests: Strength properties changed for all tested geogrids as the temperature decreased. All tested geogrids got stiffer at lower temperatures. The magnitude of the effects is different for different geogrids. The tensile strength increased with lower temperature for all tested geogrids except for the welded PET geogrid, which got lower tensile strength at lower temperature. The half-scale test indicates that the amount of installation damages at geogrids can be dependent of the temperature at installation. However, these indications can only be seen at two out of five tested geogrids. The effect cannot be connected to a specific step in the installation procedure and cannot be explained by the results from the temperature controlled tensile tests. The results from the half-scale test have a statistically low reliability since only one installation for each temperature and geogrid type was done. The compaction equipment used during the test was small, and had low compaction energy compared to a vibratory roller compactor commonly used in construction work. With respect to the discussion above, further studies should be focusing on developing the half-scale test. It is suggested that the test is scaled up to a full-scale test in order to simulate a real installation as close as possible. The test should also be conducted several times for each geogrid at each temperature in order to enable statistical analyses.
|
22 |
The influence of Mn on the microstructure and mechanical properties of Al-Si based alloys containing FeLindrud, Lennart, Lindgren, Göran January 2006 (has links)
Abstract The purpose of this research is to investigate the influence of Manganese (Mn) on cast aluminum alloys where a substantial amount of Iron (Fe) is included. Ductility and tensile strength need to be improved in recycled aluminum alloys where greater amounts of Fe are found. Fe is a common impurity and is known to be detrimental to mechanical properties and in order to neutralize the effects of Fe; modifiers such as Mn are added. In this investigation, attempts will be carried out aiming to find the optimal amount of Mn. Other related topics that will be discussed are whether there exists a Mn/Fe ratio which clearly modifies the harmful iron- rich phases and improves the properties for a certain alloy or not. Also, will the heat treatment have a significant effect on mechanical properties? These are some of the questions that will be answered in this paper. It is hard to find research articles that focus only on the influence of Mn on the microstructure and mechanical properties of Al-Si cast alloys. Much of the work that is already published concerns only a specific alloy and casting method. In this work three different casting processes, sand-, die- and high pressure die-casting, will be simulated by using gradient solidification equipment. Furthermore, the influence of heat treatment on the mechanical properties will be examined. The results showed that the solidification rate had the biggest impact on the microstructure and mechanical properties of the alloys, where the fastest cooling rate gave the best results. The effect of Mn seems to influence the samples with coarser microstructures significantly where it had time to modify the Iron-rich needles, also called the β-phase. At higher cooling rates the impact of Mn was impeded. It has been observed that a high content of Mn (around 0.6%) needs to be added before the properties start to improve. UTS (Ultimate Tensile Strength) and YS (Yield Strength) are improved while ductility is lowered. Heat treatment did not seem to have any influence on the effects of Mn.
|
23 |
Mechanical Characterization And Modelling Of Porous Polymeric Materials Manufactured By Selective Laser SinteringTekin, Cevdet Murat 01 September 2009 (has links) (PDF)
Rapid prototyping methods embrace a family of manufacturing methods that are developed to speed up the prototyping stage of product design. The sole needed input for production being the solid model of the part, mold/tool-free production characteristics and the geometric part complexity that can be achieved due to layer-by-layer production have extended the applicability/research areas of these methods beyond prototyping. Local pore formation in part that occurs as a result of the discrete manufacturing nature of rapid prototyping methods can be
viewed as an opportunity for material development. In this thesis, the manufacturing-internal (porous) structure-mechanical property relations of porous materials are investigated. These porous parts are produced via Selective Laser Sintering (SLS) which is a rapid prototyping method. The elastic modulus, tensile strength, rupture strength and Poisson&rsquo / s ratio of uniform porous specimens with known porosities are determined through standardized mechanical tests for polymeric materials. The mechanical property variation profiles in graded materials are determined using the mechanical properties of uniform parts. The mechanical behavior of uniform and graded materials under applied loads are modeled using finite element method and simulation results are compared to the results of mechanical tests performed on graded materials. In addition, feasibility of producing resin filled composite parts from these uniform and graded porous parts are sought. Porous parts (both uniformly and graded) that are infiltrated with epoxy resin have been characterized mechanically and the results have been compared with the uninfiltrated porous parts.
|
24 |
The influence of Mn on the microstructure and mechanical properties of Al-Si based alloys containing FeLindrud, Lennart, Lindgren, Göran January 2006 (has links)
<p>Abstract</p><p>The purpose of this research is to investigate the influence of Manganese (Mn) on cast aluminum alloys where a substantial amount of Iron (Fe) is included. Ductility and tensile strength need to be improved in recycled aluminum alloys where greater amounts of Fe are found. Fe is a common impurity and is known to be detrimental to mechanical properties and in order to neutralize the effects of Fe; modifiers such as Mn are added. In this investigation, attempts will be carried out aiming to find the optimal amount of Mn. Other related topics that will be discussed are whether there exists a Mn/Fe ratio which clearly modifies the harmful iron- rich phases and improves the properties for a certain alloy or not. Also, will the heat treatment have a significant effect on mechanical properties? These are some of the questions that will be answered in this paper.</p><p>It is hard to find research articles that focus only on the influence of Mn on the microstructure and mechanical properties of Al-Si cast alloys. Much of the work that is already published concerns only a specific alloy and casting method. In this work three different casting processes, sand-, die- and high pressure die-casting, will be simulated by using gradient solidification equipment. Furthermore, the influence of heat treatment on the mechanical properties will be examined.</p><p>The results showed that the solidification rate had the biggest impact on the microstructure and mechanical properties of the alloys, where the fastest cooling rate gave the best results. The effect of Mn seems to influence the samples with coarser microstructures significantly where it had time to modify the Iron-rich needles, also called the β-phase. At higher cooling rates the impact of Mn was impeded. It has been observed that a high content of Mn (around 0.6%) needs to be added before the properties start to improve. UTS (Ultimate Tensile Strength) and YS (Yield Strength) are improved while ductility is lowered. Heat treatment did not seem to have any influence on the effects of Mn.</p>
|
25 |
Mechanical Properties of Outer Protection Layer on Submarine High Voltage CablesHosseini, Ehsan January 2015 (has links)
In this thesis, the Mechanical properties of polypropylene yarn of outer protection layer on Submarine High Voltage Cable, twisted around submarine cable,is determined on various conditions at ABB Company. In the first step, tensile tests are done with polypropylene yarn specimens with and without Bitumen at Room temperature. In the second step,tensile tests are done with polypropylene yarn specimens with and without Bitumen and with knotted polypropylene yarn namely: the Fishermen’s knot, the Weaver’s knot, the Square knot and the Overhand knot at Warm Condition (60˚c) and Cold Condition(-5˚c). In the final step,it is proposed to obtain numerical solution using FEM analysis with ABAQUS Software to obtain the hoop stress , the yarn stresses from twisting cable and analyzing of the cylindrical buckling in the buckling torsion and buckling bending on the outer layer of submarine cable with polypropylene material that is mixed with Bitumen.
|
26 |
Desempenho energético de um trator agrícola 4x2 – TDA, em função da pressão de inflação dos pneus em pista de concreto e em solo mobilizado, conforme a norma OECD – código 2 / Energy performace of an agricultural tractor 4x2 TDA as a function of inflation pressure of tires on concrete surface and tilled soil, according to standard OECD-Code 2Souza, Fábio Henrique de January 2013 (has links)
SOUZA, Fábio Henrique de. Desempenho energético de um trator agrícola 4x2 – TDA, em função da pressão de inflação dos pneus em pista de concreto e em solo mobilizado, conforme a norma OECD – código 2. 2013. 111 f. Dissertação (Mestrado em engenharia agrícola)- Universidade Federal do Ceará, Fortaleza-CE, 2013. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-06-21T18:16:56Z
No. of bitstreams: 1
2013_dis_fhsouza.pdf: 2128560 bytes, checksum: 78b83c20c6855b47ac3b5dff81349d62 (MD5) / Approved for entry into archive by José Jairo Viana de Sousa (jairo@ufc.br) on 2016-07-21T20:13:28Z (GMT) No. of bitstreams: 1
2013_dis_fhsouza.pdf: 2128560 bytes, checksum: 78b83c20c6855b47ac3b5dff81349d62 (MD5) / Made available in DSpace on 2016-07-21T20:13:28Z (GMT). No. of bitstreams: 1
2013_dis_fhsouza.pdf: 2128560 bytes, checksum: 78b83c20c6855b47ac3b5dff81349d62 (MD5)
Previous issue date: 2013 / Agricult tractor adequation aiming the use of appropriated tire inflation pressures for different surface conditions results in better overall performance with consequent increase in operational capacity and better quality of service. Thus this study aimed to assess the energy performance of a farm tractor 4x2 - TDA working with different forces in the drawbar, inflation pressure of tires on concrete surface and tilled soil, using as a testing standard OECD – “Code 2" (2012). The tests were conducted at the Center for Testing Machines and Tires Agroforestry - NEMPA, a randomized 2x3x2 factorial and tracks with five repetitions, two tire inflation pressures Tractor 165.4 kPa (24 psi) in rear axles and 220.6 kPa (32 psi) front axles on the tractor, corresponding to maximum inflation pressure recommended by the tire manufacturer and 110.3 kPa (16 psi) in rear axles and 110.3 kPa (16 psi) in front wheelsets Tractor, corresponding to minimal inflation pressure recommended by the tire manufacturer, three forces applied to the drawbar 100%, 75% and 50% of the maximum force of traction at maximum power and rated speed of the engine and two types of bearing surfaces . These factors were arranged to allow evaluation of the effects of performance variables individually or in groups, with all data presented normality were subjected to analysis of variance, using the DMS test at 5% significance for the comparison of means, the data not normally distributed were arranged for statistical analysis by Exponentially Weighted Moving Average - MMEP. The tractor test was evaluated in the 7040 New Holland TM engine with maximum power specified by the manufacturer of 132 kW at 2200 rpm, pulling the Mobile Unit Testing in Drawbar - UMEB generated. In field trials showed that the minimum tire inflation pressure recommended by the tire manufacturer has improved the energy performance of the tractor, reducing specific consumption of fuel and increasing the yield on the tractor drawbar. In concrete surface the tractor got maximum tensile strength 32.6% higher than the maximum tensile strength obtained in surface soil mobilized. The test criteria employed the standard OECD - "Code 2" provided a standardized test in facilitating the comparison between the factors evaluated. / A adequação de um trator agrícola, visando utilização de pressões de inflação dos pneus adequadas, para diferentes condições superficiais de solo, resulta em melhor desempenho geral, com consequente aumento da capacidade operacional e melhor qualidade de operação. Assim este trabalho teve como objetivo avaliar o desempenho energético de um trator agrícola 4x2 - TDA trabalhando com diferentes forças na barra de tração, pressão de inflação dos pneus em superfície de concreto e em solo mobilizado, utilizando como norma de ensaio a OECD – “Código 2” (2012). Os ensaios foram realizados, no Núcleo de Ensaios de Máquinas e Pneus Agroflorestais – NEMPA, com delineamento experimental em faixas e esquema fatorial 2x3x2 com cinco repetições, sendo duas pressões de inflação dos pneus do trator 165,4 kPa (24 psi) nos rodados traseiro e 220,6 kPa (32 psi) nos rodados dianteiro do trator, correspondente a máxima pressão de inflação recomendada pelo fabricante dos pneus e 110,3 kPa (16 psi) nos rodados traseiro e 110,3 kPa (16 psi) nos rodados dianteiro do trator, correspondente a mínima pressão de inflação recomendada pelo fabricante dos pneus, três forças aplicadas na barra de tração 100%, 75% e 50% da força máxima de tração na potência máxima e velocidade nominal do motor e dois tipos de superfícies de rolamento. Esses fatores foram arranjados para permitir a avaliação dos efeitos das variáveis de desempenho individualmente ou em grupos, sendo todos os dados que apresentaram normalidade foram submetidos à análise de variância, aplicando o teste DMS a 5% de significância, para a comparação das médias, os dados que não apresentaram distribuição normal foram arranjados para analise estatística através da Média Móvel Exponencialmente Ponderada - MMEP. O trator avaliado no ensaio foi o New Holland TM 7040 com potência máxima no motor indicada pelo fabricante de 132 kW a 2200 rpm, tracionando a Unidade Móvel de Ensaio na Barra de Tração - UMEB. Nos ensaios de campo observou-se que a mínima pressão de inflação dos pneus recomendada pelo fabricante dos pneus melhorou o desempenho energético do trator, reduzindo o consumo especifico de combustível e aumentando o rendimento na barra de tração do trator. Em superfície de concreto o trator obteve força máxima de tração 32,6% superior à força máxima de tração obtida em superfície de solo mobilizado. Os critérios de ensaio empregados da norma OECD - “Código 2” proporcionaram uma padronização no ensaio facilitando a comparação entre os fatores avaliados.
|
27 |
Análise das imagens de ruptura de corpos de prova de polipropileno em ensaio de tração obtidas através de câmera de alta velocidade / High-speed camera analysis of rupture of polypropylene specimens in tensile testsBacchi, Renato Vieira 19 August 2018 (has links)
Orientadores: Edvaldo Sabadini, Marco-Aurelio De Paoli / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-19T06:55:08Z (GMT). No. of bitstreams: 1
Bacchi_RenatoVieira_M.pdf: 13069240 bytes, checksum: 33b4fb8f5e4184296681a0de7210799c (MD5)
Previous issue date: 2011 / Resumo: Peças de polipropileno isotático, iPP, moldadas por injeção podem apresentar variação de propriedades em função dos parâmetros de injeção. Uma dessas propriedades é a propagação de ruptura, que foi estudada neste trabalho com o uso de imagens obtidas com câmera de alta velocidade ajustada para velocidades de captura entre 18.000 e 45.000 fotos por segundo. Os parâmetros modificados no processo de moldagem por injeção foram o tempo de resfriamento e a temperatura do molde. Foram formados seis grupos de corpos de prova (CP) a serem submetidos aos ensaios de tração. As imagens dos rompimentos nos ensaios de tração foram capturadas com a câmera de alta velocidade. Os CP dos grupos 1, 2 e 3 foram resfriados em molde a 22 °C durante 8, 25 e 55 s, respectivamente. Os CP dos grupos 4, 5 e 6 foram resfriados em molde a 80 °C por 8, 25 e 55 s, respectivamente. Foram observados três padrões de rompimento associados aos diferentes grupos. O primeiro padrão correspondente aos CP dos grupos 1 e 4, com tempos de ruptura entre 0,04 e 0,09 ms. O segundo padrão, apresentado pelos grupos 2 e 3, apresenta formação de pescoço e alto alongamento, porém sem tempo de ruptura definido. O terceiro padrão, observado nos grupos 5 e 6, apresenta ruptura com tempo de propagação médio de 1,5 ms e propagação elipsóide da fissura. Foram realizadas medidas de difração de raios-X e calorimetria diferencial exploratória, mas não foram observadas variações significativas dos graus de cristalinidade para os diferentes grupos. Foram obtidas micrografias por microscopia eletrônica de varredura para amostras dos seis grupos, que mostraram maior uniformidade na superfície de ruptura para os grupos 1 e 4. Para os grupos 2 e 3 foi observada presença de fibrilas. Para os grupos 5 e 6 foram observadas diferenças significativas entre as superfícies do centro do e das extremidades do CP. Para observar os efeitos do envelhecimento nos padrões de ruptura, foram armazenados alguns CP de cada um dos grupos durante 12 semanas. O enrijecimento do material tende a causar ruptura mais rápida em todos os grupos e os grupos 2 e 3 foram os mais afetados. Os resultados deste trabalho mostram que, não apenas as propriedades mecânicas do iPP são afetadas pelas variáveis na moldagem por injeção como também os mecanismos de rompimento variam consideravelmente, e estes são claramente observados com imagens em alta velocidade / Abstract: Injection-molded isotactic polypropylene, iPP, samples present different properties variation as a function of the injection parameters. One of these properties is the rupture propagation on the material, which was studied with the use a high-speed camera adjusted to capture from 18,000 to 45,000 frames per second. The injection molding parameters modified were: cooling time and temperature of the mold. Six groups of specimens were molded and submitted to tensile tests until failure. The rupture images were capture with the high-speed camera. The specimens of the groups 1, 2 and 3 were cooled in the mold at 22 °C during 8, 25 and 55 seconds, respectively. Groups 4, 5 and 6 were cooled in the mold at 80 °C during 8, 25 and 55 s, respectively. Three major rupture patterns associated with the groups were observed. The first pattern, presented by groups 1 and 4, consists in a rapid rupture, with time of propagation between 0.04 and 0.09 ms. A second pattern, observed in groups 2 and 3, presents necking and high elongation, but without a precise time for complete rupture. The third pattern, observed for groups 5 and 6, shows an ellipsoid crack propagation, with an average time for rupture of 1.5 ms. X-Ray diffraction and differential scanning calorimetry measurements were made, but no considerable differences in the degree of crystallinity among the groups was observed. Scanning electron microscopy images of the rupture surface of the specimens showed that there is considerable uniformity in groups 1 and 4. In groups 2 and 3 the appearance of fibrils was observed, whilst for groups 5 and 6 considerable differences between the skin and the core of the specimen was observed. Physical ageing effects on the rupture patterns were studied after the storage of few specimens during 12 weeks. Hardening of the material, due to physical ageing, affected all the groups, but it was most apparent in groups 2 and 3, which started to behave more like the other groups after this time. The result in this work showed that not only the mechanical properties of iPP are affected by the modification in the mold injection parameters, but also the rupture mechanisms can considerably vary. This is observed clearly in the high-speed images / Mestrado / Físico-Química / Mestre em Química
|
28 |
Influencia do grau de mineralização do substrato dentinario na resistencia a microtração de tres sistemas adesivosErhardt, Maria Carolina Guilherme 31 January 2003 (has links)
Orientador: Luiz Andre Freire Pimenta / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba / Made available in DSpace on 2018-08-03T17:59:19Z (GMT). No. of bitstreams: 1
Erhardt_MariaCarolinaGuilherme_M.pdf: 5117640 bytes, checksum: d255d8edb48804d7128e30ab7907508a (MD5)
Previous issue date: 2003 / Resumo: O objetivo deste estudo in vitro foi determinar a influência de superfícies dentinárias desmineralizadas, normais e hipermineralizadas na resistência adesiva (RA) dos sistemas adesivos Clearfil Liner Bond 2V / Kuraray Co. (CLB), Single Bond /3M (SB) e OptiBond Solo P/us / Kerr (OSP). Noventa incisivos bovinos foram selecionados, tendo suas superfícies vestibulares desgastadas com lixas de carbeto de silício em granulação decrescente. Os dentes foram aleatoriamente separados em três grupos, sendo submetidos a diferentes padrões de ciclagem de pH: G1 - dentina desmineralizada (DD)i G2 - dentina hipermineralizada (DH) e G3 - dentina normal (DN). Cada grupo, com seus respectivos padrões de superfície, foi novamente dividido por aleatorização em três subgrupos, para que recebessem a aplicação de um dos três sistemas adesivos, de acordo com a recomendação dos fabricantes. Blocos de compósito Filtek Z250 / 3M com altura de 5 mm foram incrementalmente confeccionados, e após 24 h de armazenagem em água destilada a 37 °C, os dentes foram preparados para serem submetidos ao teste de microtração. Dispostos em cortadeira metalográfica de precisão, os dentes foram seriadamente seccionados em fatias de 1,0 mm de espessura paralelamente ao longo eixo dental. Em seguida, dispositivos hour glass foram manualmente confeccionados com o auxílio de pontas diamantadas de granulação fina em alta rotação, com área adesiva final de 0,8 mm2. Os espécimes foram afixados individualmente em um dispositivo de microtração (MT Jig), acoplada em máquina de ensaio universal / EMIC, com velocidade de 0,5 mm/min. Após o teste, as duas porções fraturadas foram avaliadas em microscópio óptico (40x). Os valores de RA foram submetidos aos testes de análise de variância (ANOVA 2 fatores) e Tukey, com nível de significância de 5%. Os valores médios, expressos em MPa, foram: DN;SB= 31,05; DN/OSP= 24,49; DH;SB= 23,97; DH/CLB= 19,32; DN/CLB= 19,00; DH/OSP= 17,84; DD/CLB= 15,81; DD;SB= 13,62i DD/OSP= 5,22. Houve interação estatística entre os sistemas adesivos e os tipos de dentina avaliados. Em DN, os sistemas adesivos SB e OSP foram significativamente mais efetivos que o adesivo CLB. Em DD, os adesivos SB e CLB apresentaram os maiores valores de RA. Em DH, todos os sistemas adesivos se comportaram de maneira semelhante. Não foi possível observar um benefício claro advindo da utilização de um único sistema adesivo em todos os níveis de mineralização dentinária / Abstract: The purpose of this in vitro study was to investigate the effect of dentin mineralization level: demineralized, normal or hypermineralized, on microtensile bond strength of the adhesive systems Clearfil Liner Bond 2V / Kuraray Co. (CLB), Single Bond / 3M (SB) and OptiBond Solo Plus / Kerr (OSP). 90 freshly extracted incisive bovine teeth were selected, thoroughly cleaned and mechanically polished with wet silicon carbide papers. Teeth were randomly assigned into three groups, which were submitted to different pH-cycling models: Group I - demineralized dentin (DD); Group II - hypermineralized dentin (HD) and Group III normal dentin (ND). Each group, with its specific mineralization pattern, was randomly reassigned into three subgroups, in order to receive one of each adhesive application, according to manufacturers' instructions. Resin "crowns" with 5 mm high were incrementally constructed with Filtek Z250 /3M composite resin, and after 24 h of storage in distilled water at 37°C, teeth were prepared to micro-tensile testing. Samples were serially sectioned on a precision cutter in 1 mm slices, parallel to the dental long axis; and with diamond points, the hour glass devices were trimmed resulting in a cross-sectional area of 0.8 mm2. Each specimen was indMdual1y tested on a microtensile device (MT Jig) attached to a universal testing machine / EMIC with a crosshead speed of 0.5 mm/min. After testing, each specimen was visually evaluated. The bond strengths were statistically evaluated with two-way ANOVA and Tukey's test (p<0.05). The mean values obtained, recorded in MPa, were: ND;SB= 31.05; ND/OSP= 24.49; HD;SB= 23.97; HD/CLB= 19.32; ND/CLB= 19.00; HD/OSP= 17.84; DD/CLB= 15.81; DD;SB= 13.62; DD/OSP= 5.22. The statistical analysis showed a significant (p<0.05) interaction between the adhesive systems and the dentin substrates evaluated. SB and OSP presented the higher tensile bond strength values on ND. In terms of tensile bond strengths to DD, the highest mean values originated from SB and CLB. Regarding the HD, no differences were found among the adhesive systems evaluated. It could not be observed a real benefit from a unique adhesive system in all dentin mineralization levels / Mestrado / Dentística / Mestre em Clínica Odontológica
|
29 |
Aplikace CMT Advanced v průmyslové praxi / CMT advanced application in industrial practiceŠoulák, Petr January 2019 (has links)
In presented diploma thesis is studied problematics of welding of high strength steels. This work also describes arc welding in protective atmosphere CMT Advanced. In experimental part of this work is CMT Advanced method compared with conventional arc welding in protective atmosphere in shortcut mode used for welding of Hardox 450 and Weldox 700 E. Comparing of mechanical properties of weld material are realized via transverse tensile testing and measuring of microhardness. Macrostructure and microstructure of weld was evaluated too. In the last part of this thesis is a brief economical assessment of both studied methods.
|
30 |
Analýza plastových materiálů vyrobených aditivní technologií 3D tisku / Analysis of Plastic Materials Produced by Additive 3D Printing TechnologySpišák, Lukáš January 2020 (has links)
The diploma thesis deals with the influence of colouring additives and setting of the process parameters of 3D printing on the mechanical and surface properties of samples made of PLA material. The work describes the process of filament production, as well as the printing of normalized samples on a 3D printer using the additive method Fused Deposition Modeling. The impact of 3 types of colouring additives is evaluated on the basis of tensile test, hardness test and surface analysis. The evaluated quantities are primarily tensile strength, hardness, surface texture, roughness and corrugation. The work also evaluates the influence of the percentage of sample filling, the direction of the fibres of the inner filling and the orientation of the samples in the printing chamber of the 3D printer on the mechanical properties. The results are evaluated on the basis of the tensile test and the evaluated quantities are mainly the tensile strength, the ultimate stress and the modulus of elasticity in traction. The work is completed by evaluating the results and overall recommendations for filament manufacturers and users.
|
Page generated in 0.037 seconds