1 |
Text Mining Infrastructure in RMeyer, David, Hornik, Kurt, Feinerer, Ingo 31 March 2008 (has links) (PDF)
During the last decade text mining has become a widely used discipline utilizing statistical and machine learning methods. We present the tm package which provides a framework for text mining applications within R. We give a survey on text mining facilities in R and explain how typical application tasks can be carried out using our framework. We present techniques for count-based analysis methods, text clustering, text classiffication and string kernels. (authors' abstract)
|
2 |
Aprendizado de máquina com informação privilegiada: abordagens para agrupamento hierárquico de textos / Machine learning with privileged information: approaches for hierarchical text clusteringMarcacini, Ricardo Marcondes 14 October 2014 (has links)
Métodos de agrupamento hierárquico de textos são muito úteis para analisar o conhecimento embutido em coleções textuais, organizando os documentos textuais em grupos e subgrupos para facilitar a exploração do conhecimento em diversos níveis de granularidade. Tais métodos pertencem à área de aprendizado não supervisionado de máquina, uma que vez obtêm modelos de agrupamento apenas pela observação de regularidades existentes na coleção textual, sem supervisão humana. Os métodos tradicionais de agrupamento assumem que a coleção textual é representada apenas pela informação técnica, ou seja, palavras e frases extraídas diretamente dos textos. Por outro lado, em muitas tarefas de agrupamento existe conhecimento adicional e valioso a respeito dos dados, geralmente extraído por um processo avançado com apoio de usuários especialistas do domínio do problema. Devido ao alto custo para obtenção desses dados, esta informação adicional é definida como privilegiada e usualmente está disponível para representar apenas um subconjunto dos documentos textuais. Recentemente, um novo paradigma de aprendizado de máquina denominado LUPI (Learning Using Privileged Information) foi proposto por Vapnik para incorporar informação privilegiada em métodos aprendizado supervisionado. Neste trabalho de doutorado, o paradigma LUPI foi estendido para aprendizado não supervisionado, em especial, para agrupamento hierárquico de textos. Foram propostas e avaliadas abordagens para lidar com diferentes desafios existentes em tarefas de agrupamento, envolvendo a extração e estruturação da informação privilegiada e seu uso para refinar ou corrigir modelos de agrupamento. As abordagens propostas se mostraram eficazes em (i) consenso de agrupamentos, permitindo combinar diferentes representações e soluções de agrupamento; (ii) aprendizado de métricas, em que medidas de proximidades mais robustas foram obtidas com base na informação privilegiada; e (iii) seleção de modelos, em que a informação privilegiada é explorada para identificar relevantes estruturas de agrupamento hierárquico. Todas as abordagens apresentadas foram investigadas em um cenário de agrupamento incremental, permitindo seu uso em aplicações práticas caracterizadas pela necessidade de eficiência computacional e alta frequência de publicação de novo conhecimento textual. / Hierarchical text clustering methods are very useful to analyze the implicit knowledge in textual collections, enabling the organization of textual documents into clusters and subclusters to facilitate the knowledge browsing at various levels of granularity. Such methods are classified as unsupervised machine learning, since the clustering models are obtained only by observing regularities of textual data without human supervision. Traditional clustering methods assume that the text collection is represented only by the technical information, i.e., words and phrases extracted directly from the texts. On the other hand, in many text clustering tasks there is an additional and valuable knowledge about the problem domain, usually extracted by an advanced process with support of the domain experts. Due to the high cost of obtaining such expert knowledge, this additional information is defined as privileged and is usually available to represent only a subset of the textual documents. Recently, a new machine learning paradigm called LUPI (Learning Using Privileged Information) was proposed by Vapnik to incorporate privileged information into supervised learning methods. In this thesis, the LUPI paradigm was extended to unsupervised learning setting, in particular for hierarchical text clustering. We propose and evaluate approaches to deal with different challenges for clustering tasks, involving the extraction and structuring of privileged information and using this additional information to refine or correct clustering models. The proposed approaches were effective in (i) consensus clustering, allowing to combine different clustering solutions and textual representations; (ii) metric learning, in which more robust proximity measures are obtained from privileged information; and (iii) model selection, in which the privileged information is exploited to identify the relevant structures of hierarchical clustering. All the approaches presented in this thesis were investigated in an incremental clustering scenario, allowing its use in practical applications that require computational efficiency as well as deal with high frequency of publication of new textual knowledge.
|
3 |
Improving scalability and accuracy of text mining in grid environmentZhai, Yuzheng January 2009 (has links)
The advance in technologies such as massive storage devices and high speed internet has led to an enormous increase in the volume of available documents in electronic form. These documents represent information in a complex and rich manner that cannot be analysed using conventional statistical data mining methods. Consequently, text mining is developed as a growing new technology for discovering knowledge from textual data and managing textual information. Processing and analysing textual information can potentially obtain valuable and important information, yet these tasks also requires enormous amount of computational resources due to the sheer size of the data available. Therefore, it is important to enhance the existing methodologies to achieve better scalability, efficiency and accuracy. / The emerging Grid technology shows promising results in solving the problem of scalability by splitting the works from text clustering algorithms into a number of jobs, each to be executed separately and simultaneously on different computing resources. That allows for a substantial decrease in the processing time and maintaining the similar level of quality at the same time. / To improve the quality of the text clustering results, a new document encoding method is introduced that takes into consideration of the semantic similarities of the words. In this way, documents that are similar in content will be more likely to be group together. / One of the ultimate goals of text mining is to help us to gain insights to the problem and to assist in the decision making process together with other source of information. Hence we tested the effectiveness of incorporating text mining method in the context of stock market prediction. This is achieved by integrating the outcomes obtained from text mining with the ones from data mining, which results in a more accurate forecast than using any single method.
|
4 |
Aprendizado de máquina com informação privilegiada: abordagens para agrupamento hierárquico de textos / Machine learning with privileged information: approaches for hierarchical text clusteringRicardo Marcondes Marcacini 14 October 2014 (has links)
Métodos de agrupamento hierárquico de textos são muito úteis para analisar o conhecimento embutido em coleções textuais, organizando os documentos textuais em grupos e subgrupos para facilitar a exploração do conhecimento em diversos níveis de granularidade. Tais métodos pertencem à área de aprendizado não supervisionado de máquina, uma que vez obtêm modelos de agrupamento apenas pela observação de regularidades existentes na coleção textual, sem supervisão humana. Os métodos tradicionais de agrupamento assumem que a coleção textual é representada apenas pela informação técnica, ou seja, palavras e frases extraídas diretamente dos textos. Por outro lado, em muitas tarefas de agrupamento existe conhecimento adicional e valioso a respeito dos dados, geralmente extraído por um processo avançado com apoio de usuários especialistas do domínio do problema. Devido ao alto custo para obtenção desses dados, esta informação adicional é definida como privilegiada e usualmente está disponível para representar apenas um subconjunto dos documentos textuais. Recentemente, um novo paradigma de aprendizado de máquina denominado LUPI (Learning Using Privileged Information) foi proposto por Vapnik para incorporar informação privilegiada em métodos aprendizado supervisionado. Neste trabalho de doutorado, o paradigma LUPI foi estendido para aprendizado não supervisionado, em especial, para agrupamento hierárquico de textos. Foram propostas e avaliadas abordagens para lidar com diferentes desafios existentes em tarefas de agrupamento, envolvendo a extração e estruturação da informação privilegiada e seu uso para refinar ou corrigir modelos de agrupamento. As abordagens propostas se mostraram eficazes em (i) consenso de agrupamentos, permitindo combinar diferentes representações e soluções de agrupamento; (ii) aprendizado de métricas, em que medidas de proximidades mais robustas foram obtidas com base na informação privilegiada; e (iii) seleção de modelos, em que a informação privilegiada é explorada para identificar relevantes estruturas de agrupamento hierárquico. Todas as abordagens apresentadas foram investigadas em um cenário de agrupamento incremental, permitindo seu uso em aplicações práticas caracterizadas pela necessidade de eficiência computacional e alta frequência de publicação de novo conhecimento textual. / Hierarchical text clustering methods are very useful to analyze the implicit knowledge in textual collections, enabling the organization of textual documents into clusters and subclusters to facilitate the knowledge browsing at various levels of granularity. Such methods are classified as unsupervised machine learning, since the clustering models are obtained only by observing regularities of textual data without human supervision. Traditional clustering methods assume that the text collection is represented only by the technical information, i.e., words and phrases extracted directly from the texts. On the other hand, in many text clustering tasks there is an additional and valuable knowledge about the problem domain, usually extracted by an advanced process with support of the domain experts. Due to the high cost of obtaining such expert knowledge, this additional information is defined as privileged and is usually available to represent only a subset of the textual documents. Recently, a new machine learning paradigm called LUPI (Learning Using Privileged Information) was proposed by Vapnik to incorporate privileged information into supervised learning methods. In this thesis, the LUPI paradigm was extended to unsupervised learning setting, in particular for hierarchical text clustering. We propose and evaluate approaches to deal with different challenges for clustering tasks, involving the extraction and structuring of privileged information and using this additional information to refine or correct clustering models. The proposed approaches were effective in (i) consensus clustering, allowing to combine different clustering solutions and textual representations; (ii) metric learning, in which more robust proximity measures are obtained from privileged information; and (iii) model selection, in which the privileged information is exploited to identify the relevant structures of hierarchical clustering. All the approaches presented in this thesis were investigated in an incremental clustering scenario, allowing its use in practical applications that require computational efficiency as well as deal with high frequency of publication of new textual knowledge.
|
5 |
Knowledge management and discovery for genotype/phenotype dataGroth, Philip 02 December 2009 (has links)
Die Untersuchung des Phänotyps bringt z.B. bei genetischen Krankheiten ein Verständnis der zugrunde liegenden Mechanismen mit sich. Aufgrund dessen wurden neue Technologien wie RNA-Interferenz (RNAi) entwickelt, die Genfunktionen entschlüsseln und mehr phänotypische Daten erzeugen. Interpretation der Ergebnisse solcher Versuche ist insbesondere bei heterogenen Daten eine große Herausforderung. Wenige Ansätze haben bisher Daten über die direkte Verknüpfung von Genotyp und Phänotyp hinaus interpretiert. Diese Dissertation zeigt neue Methoden, die Entdeckungen in Phänotypen über Spezies und Methodik hinweg ermöglichen. Es erfolgt eine Erfassung der verfügbaren Datenbanken und der Ansätze zur Analyse ihres Inhalts. Die Grenzen und Hürden, die noch bewältigt werden müssen, z.B. fehlende Datenintegration, lückenhafte Ontologien und der Mangel an Methoden zur Datenanalyse, werden diskutiert. Der Ansatz zur Integration von Genotyp- und Phänotypdaten, PhenomicDB 2, wird präsentiert. Diese Datenbank assoziiert Gene mit Phänotypen durch Orthologie über Spezies hinweg. Im Fokus sind die Integration von RNAi-Daten und die Einbindung von Ontologien für Phänotypen, Experimentiermethoden und Zelllinien. Ferner wird eine Studie präsentiert, in der Phänotypendaten aus PhenomicDB genutzt werden, um Genfunktionen vorherzusagen. Dazu werden Gene aufgrund ihrer Phänotypen mit Textclustering gruppiert. Die Gruppen zeigen hohe biologische Kohärenz, da sich viele gemeinsame Annotationen aus der Gen-Ontologie und viele Protein-Protein-Interaktionen innerhalb der Gruppen finden, was zur Vorhersage von Genfunktionen durch Übertragung von Annotationen von gut annotierten Genen zu Genen mit weniger Annotationen genutzt wird. Zuletzt wird der Prototyp PhenoMIX präsentiert, in dem Genotypen und Phänotypen mit geclusterten Phänotypen, PPi, Orthologien und weiteren Ähnlichkeitsmaßen integriert und deren Gruppierungen zur Vorhersage von Genfunktionen, sowie von phänotypischen Wörtern genutzt. / In diseases with a genetic component, examination of the phenotype can aid understanding the underlying genetics. Technologies to generate high-throughput phenotypes, such as RNA interference (RNAi), have been developed to decipher functions for genes. This large-scale characterization of genes strongly increases phenotypic information. It is a challenge to interpret results of such functional screens, especially with heterogeneous data sets. Thus, there have been only few efforts to make use of phenotype data beyond the single genotype-phenotype relationship. Here, methods are presented for knowledge discovery in phenotypes across species and screening methods. The available databases and various approaches to analyzing their content are reviewed, including a discussion of hurdles to be overcome, e.g. lack of data integration, inadequate ontologies and shortage of analytical tools. PhenomicDB 2 is an approach to integrate genotype and phenotype data on a large scale, using orthologies for cross-species phenotypes. The focus lies on the uptake of quantitative and descriptive RNAi data and ontologies of phenotypes, assays and cell-lines. Then, the results of a study are presented in which the large set of phenotype data from PhenomicDB is taken to predict gene annotations. Text clustering is utilized to group genes based on their phenotype descriptions. It is shown that these clusters correlate well with indicators for biological coherence in gene groups, such as functional annotations from the Gene Ontology (GO) and protein-protein interactions. The clusters are then used to predict gene function by carrying over annotations from well-annotated genes to less well-characterized genes. Finally, the prototype PhenoMIX is presented, integrating genotype and phenotype data with clustered phenotypes, orthologies, interaction data and other similarity measures. Data grouped by these measures are evaluated for theirnpredictiveness in gene functions and phenotype terms.
|
6 |
Agrupamento de textos utilizando divergência Kullback-Leibler / Texts grouping using Kullback-Leibler divergenceWillian Darwin Junior 22 February 2016 (has links)
O presente trabalho propõe uma metodologia para agrupamento de textos que possa ser utilizada tanto em busca textual em geral como mais especificamente na distribuição de processos jurídicos para fins de redução do tempo de resolução de conflitos judiciais. A metodologia proposta utiliza a divergência Kullback-Leibler aplicada às distribuições de frequência dos radicais (semantemas) das palavras presentes nos textos. Diversos grupos de radicais são considerados, formados a partir da frequência com que ocorrem entre os textos, e as distribuições são tomadas em relação a cada um desses grupos. Para cada grupo, as divergências são calculadas em relação à distribuição de um texto de referência formado pela agregação de todos os textos da amostra, resultando em um valor para cada texto em relação a cada grupo de radicais. Ao final, esses valores são utilizados como atributos de cada texto em um processo de clusterização utilizando uma implementação do algoritmo K-Means, resultando no agrupamento dos textos. A metodologia é testada em exemplos simples de bancada e aplicada a casos concretos de registros de falhas elétricas, de textos com temas em comum e de textos jurídicos e o resultado é comparado com uma classificação realizada por um especialista. Como subprodutos da pesquisa realizada, foram gerados um ambiente gráfico de desenvolvimento de modelos baseados em Reconhecimento de Padrões e Redes Bayesianas e um estudo das possibilidades de utilização de processamento paralelo na aprendizagem de Redes Bayesianas. / This work proposes a methodology for grouping texts for the purposes of textual searching in general but also specifically for aiding in distributing law processes in order to reduce time applied in solving judicial conflicts. The proposed methodology uses the Kullback-Leibler divergence applied to frequency distributions of word stems occurring in the texts. Several groups of stems are considered, built up on their occurrence frequency among the texts and the resulting distributions are taken regarding each one of those groups. For each group, divergences are computed based on the distribution taken from a reference text originated from the assembling of all sample texts, yelding one value for each text in relation to each group of stems. Finally, those values are taken as attributes of each text in a clusterization process driven by a K-Means algorithm implementation providing a grouping for the texts. The methodology is tested for simple toy examples and applied to cases of electrical failure registering, texts with similar issues and law texts and compared to an expert\'s classification. As byproducts from the conducted research, a graphical development environment for Pattern Recognition and Bayesian Networks based models and a study on the possibilities of using parallel processing in Bayesian Networks learning have also been obtained.
|
7 |
Agrupamento de textos utilizando divergência Kullback-Leibler / Texts grouping using Kullback-Leibler divergenceDarwin Junior, Willian 22 February 2016 (has links)
O presente trabalho propõe uma metodologia para agrupamento de textos que possa ser utilizada tanto em busca textual em geral como mais especificamente na distribuição de processos jurídicos para fins de redução do tempo de resolução de conflitos judiciais. A metodologia proposta utiliza a divergência Kullback-Leibler aplicada às distribuições de frequência dos radicais (semantemas) das palavras presentes nos textos. Diversos grupos de radicais são considerados, formados a partir da frequência com que ocorrem entre os textos, e as distribuições são tomadas em relação a cada um desses grupos. Para cada grupo, as divergências são calculadas em relação à distribuição de um texto de referência formado pela agregação de todos os textos da amostra, resultando em um valor para cada texto em relação a cada grupo de radicais. Ao final, esses valores são utilizados como atributos de cada texto em um processo de clusterização utilizando uma implementação do algoritmo K-Means, resultando no agrupamento dos textos. A metodologia é testada em exemplos simples de bancada e aplicada a casos concretos de registros de falhas elétricas, de textos com temas em comum e de textos jurídicos e o resultado é comparado com uma classificação realizada por um especialista. Como subprodutos da pesquisa realizada, foram gerados um ambiente gráfico de desenvolvimento de modelos baseados em Reconhecimento de Padrões e Redes Bayesianas e um estudo das possibilidades de utilização de processamento paralelo na aprendizagem de Redes Bayesianas. / This work proposes a methodology for grouping texts for the purposes of textual searching in general but also specifically for aiding in distributing law processes in order to reduce time applied in solving judicial conflicts. The proposed methodology uses the Kullback-Leibler divergence applied to frequency distributions of word stems occurring in the texts. Several groups of stems are considered, built up on their occurrence frequency among the texts and the resulting distributions are taken regarding each one of those groups. For each group, divergences are computed based on the distribution taken from a reference text originated from the assembling of all sample texts, yelding one value for each text in relation to each group of stems. Finally, those values are taken as attributes of each text in a clusterization process driven by a K-Means algorithm implementation providing a grouping for the texts. The methodology is tested for simple toy examples and applied to cases of electrical failure registering, texts with similar issues and law texts and compared to an expert\'s classification. As byproducts from the conducted research, a graphical development environment for Pattern Recognition and Bayesian Networks based models and a study on the possibilities of using parallel processing in Bayesian Networks learning have also been obtained.
|
8 |
Busca na web e agrupamento de textos usando computação inspirada na biologia / Search in the web and text clustering using computing inspired by biologyPereira, Andre Luiz Vizine 18 December 2007 (has links)
Orientadores: Ricardo Ribeiro Gudwin, Leandro Nunes de Castro Silva / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-11T06:40:01Z (GMT). No. of bitstreams: 1
Pereira_AndreLuizVizine_M.pdf: 1817378 bytes, checksum: 1d28283d8d2855800dd0f406eb97e5e0 (MD5)
Previous issue date: 2007 / Resumo: A Internet tornou-se um dos principais meios de comunicação da atualidade, reduzindo custos, disponibilizando recursos e informação para pessoas das mais diversas áreas e interesses. Esta dissertação desenvolve e aplica duas abordagens de computação inspirada na biologia aos problemas de otimização do processo de busca e recuperação de informação na web e agrupamento de textos. Os algoritmos investigados e modificados são o algoritmo genético e o algoritmo de agrupamento por colônia de formigas. O objetivo final do trabalho é desenvolver parte do conjunto de ferramentas que será usado para compor o núcleo de uma comunidade virtual acadêmica adaptativa. Os resultados obtidos mostraram que o algoritmo genético é uma ferramenta adequada para otimizar a busca de informação na web, mas o algoritmo de agrupamento por colônia de formigas ainda apresenta limitações quanto a sua aplicabilidade para agrupamento de textos. / Abstract: The Internet became one of the main sources of information and means of communication, reducing costs and providing resources and information to the people all over the world. This dissertation develops and applies two biologically-inspired computing approaches, namely a genetic algorithm and the ant-clustering algorithm, to the problems of optimizing the information search and retrieval over the web, and to perform text clustering. The final goal of this project is to design and develop some of the tools to be used to construct an adaptive academic virtual community. The results obtained showed that the genetic algorithm can be feasibly applied to the optimizing information search and retrieval, whilest the ant-clustering algorithm needs further investigation in order to be efficiently applied to text clustering. / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
|
9 |
Metody shlukování textových dat / Textual Data Clustering MethodsMiloš, Roman January 2011 (has links)
Clustering of text data is one of tasks of text mining. It divides documents into the different categories that are based on their similarities. These categories help to easily search in the documents. This thesis describes the current methods that are used for the text document clustering. From these methods we chose Simultaneous keyword identification and clustering of text documents (SKWIC). It should achieve better results than the standard clustering algorithms such as k-means. There is designed and implemented an application for this algorithm. In the end, we compare SKWIC with a k-means algorithm.
|
10 |
Similarity Search in Document Collections / Similarity Search in Document CollectionsJordanov, Dimitar Dimitrov January 2009 (has links)
Hlavním cílem této práce je odhadnout výkonnost volně šířeni balík Sémantický Vektory a třída MoreLikeThis z balíku Apache Lucene. Tato práce nabízí porovnání těchto dvou přístupů a zavádí metody, které mohou vést ke zlepšení kvality vyhledávání.
|
Page generated in 0.0307 seconds