11 |
Laboratory Scale Study of Calcium Sulfate Hydration FormsKuthadi, Sandeep Kumar 01 May 2014 (has links)
This research is part of an ongoing project to create gypsum wallboards with enhanced fire resistance. The main goal of this research is to better understand the dehydration properties of calcium sulfate dihydrate, and the hydration of calcium sulfate hemihydrate as well as anhydrous calcium sulfate. The lab-scale kinetics of these processes were studied using thermogravimetric analysis and sorption analysis. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the products from different processes. In addition to the instrumental studies, small batches were handled in ovens and liquid slurries to better mimic the real world processing of these materials. The effects of temperature, time and humidity were investigated to determine their influence on the kinetics of dehydration/hydration of different hydration forms of calcium sulfate.
|
12 |
Analysis of the transcriptional repressor function of Arabidopsis glutaredoxin ROXY19Huang, Li-Jun 15 February 2016 (has links)
No description available.
|
13 |
Waste-to-Energy : A study on Reaction Kinetics of Tropical Wood SawdustTita, Bertrand Asongwe January 2016 (has links)
The reaction kinetics of Iroko and Mahogany were studied using TGA. The pyrolysis process was achieved using six different heating rates of 2,5,8,12,15 and 20˚C. A 15˚C/min heating rate was used for gasification in steam at different temperatures while varying the concentrations of nitrogen and steam in the process. The kinetic parameters, activation energy and pre exponential factor, were obtained by implementing two chosen kinetic models. These models are: Friedman’s Iso-conversional Method, Flynn-Wall-Ozawa Method (FWO). There were substantial differences in the values of the kinetic triplets found from the experiments. Due to the substantial differences in the values, it was not the best way to perform this kind of analysis (which is the traditional way) but instead to use pure regression analysis; but using it for the whole data set (that means for all heating rates) and minimize the difference with experimental data.
|
14 |
Incorporation of nickel into synthetic goethites and the stabilisation of mineral precursor phases : implications for natural systemsNorman, Rachel L. January 2014 (has links)
Over 70% of the Earth s economically recoverable nickel (Ni) resides in laterite ore deposits, however they account for less than half of the current global nickel production. During laterization, nickel and other soluble ions are taken into solution before re-precipitating within iron oxide minerals in the limonite zone, or as serpentines and other phyllosilicates in the layers below this zone. It is these laterite deposits that show the greatest potential for low energy, environmentally conscious processing. The major host of nickel in the limonite zone is the iron-oxyhydroxide mineral goethite, α-FeOOH, where up to 4 mol% Ni has been reported in natural specimens, and even higher levels in synthetic samples (5.5 mol%). The Ni is assumed to be incorporated in the crystal structure of the goethite, but previous characterisation work only demonstrated a weak to moderate correlation of mineral structure change with the nickel content in goethite. Mining companies working on the extraction and recovery of nickel from the limonite zone of lateritic deposits have noticed that the ease with which nickel can be extracted varies greatly; goethite rich ores that appear to have similar mineralogies/geologies can display extreme variation in their leachability. It is not clear why the ores behave in this way, but in order for extraction techniques and subsequent recovery of nickel to be improved, the reasons behind this variability need to be understood. The lateritic ore materials from which nickel is extracted are generally made up of a number of different mineral phases. The multiphase nature of the samples means that characterisation of the goethite-type phases from these materials is challenging. To simplify the system and allow the association of Ni into goethite and/or other iron oxyhydroxide phases to be studied in a controlled environment, a synthetic study was carried out. Ni-bearing goethites have been synthesised at a series of different temperatures and characterised by a range of analytical techniques including PXRD, IR, Raman, TGA, ICP-OES, SEM and TEM. It was found that a second phase, ferrihydrite, co-existed with the goethites, the proportion of which increased at lower synthesis temperatures and with increasing amounts of Ni. Ferrihydrite is known to be a precursor phase in the formation of goethite, but its poorly crystalline nature makes it difficult to identify using standard characterisation techniques such as PXRD. The introduction of Ni to the system increases the stability of the ferrihydrite phase, inhibiting its transformation to goethite. It is believed that some of the Ni thought to be incorporated into goethite could actually reside in an undetected ferrihydrite phase, which could account for the differences observed in the leachability of natural materials. Characterisation techniques were investigated to try and determine a simple way to identify ferrihydrite in these systems, which could ideally be used in the field to identify the presence of ferrihydrite in goethite rich ore materials. Thermal analysis proved to be particularly promising as a technique which could be used to identify ferrihydrite rich deposits before extraction, enabling the most efficient and environmentally conscious metal recovery process for each deposit to be identified. In order to investigate the way in which Ni partitions itself between structural incorporation into goethite and association with a secondary ferrihydrite phase, a new washing technique was developed using EDTA, which is capable of selectively removing the ferrihydrite phase whilst leaving the goethite intact. This investigation suggests that a maximum of ~2.5 mol% of Ni is structurally incorporated into goethite, regardless of how much is added during the synthesis. Any excess nickel, above that which is substituted into the goethite structure, was found to be associated with the poorly crystalline ferrihydrite phase. Despite being considered a metastable phase, the increased stability of ferrihydrite resulting from the presence of Ni suggests that it may persist in laterite deposits within geological systems. If ferrihydrite is indeed present in nickeliferous laterites, it may be a significant host for Ni, and potentially many other critical elements. Based on the methodology developed whilst studying synthetic samples, a characterisation program for materials from lateritic ore deposits was conducted to investigate the presence of ferrihydrite in natural systems. From the research presented and discussed in this thesis, proof of the presence or absence of ferrihydrite in laterite systems, causing variations in the leachability of the ore materials, could not be conclusively established. The thermal analysis technique developed here successfully identified and quantified ferrihydrite in the presence of goethite in synthetic systems, and showed great potential when used to characterise the lateritic goethite samples, certainly suggesting that ferrihydrite could be present in these natural ore materials. With further refinement of the methodology, to enable a larger range of sample types to be accurately analysed, TGA is a technique which could be used as a screening tool for laterite ores.
|
15 |
Woody and agricultural biomass torrefaction : experimental study and modelling of solid conversion and volatile species release based on biomass extracted macromolecular componentsGonzález Martínez, María 12 October 2018 (has links) (PDF)
Nowadays, there is an increasing awareness on the importance of biomass waste as a renewable source of energy, materials and chemicals. In this context, the European project MOBILE FLIP aims at developing and demonstrating mobile conversion processes suitable with variousunderexploited agro- and forest based biomass resources in order to produce energy carriers, materials and chemicals. One of these processes is torrefaction, which consists in a mild thermal treatment, occurring typically between 200 and 300°C during a few tens of minutes in a defaultoxygen atmosphere. The solid product obtained has thermal and processing properties closer to coal, and thus is suitable as fuel for combustion or gasification. During torrefaction, condensable coproducts are released, that may also be source of “green” chemicals. It is therefore crucial to characterize them to optimize the torrefaction process and design industrial units. Up to now, only few works have been focused on characterizing and modelling both solid and condensable species during torrefaction versus operating conditions and feedstock type. Furthermore, these studies typically include a reduced number of biomasses. Cellulose, hemicellulose and lignin,which constitute biomass macromolecular composition, are determining properties to predict biomass behaviour during torrefaction. However, torrefaction tests on these constituents are rare and always based on commercial compounds, which were proved as little representative of the native biomass. The objective of this study is to analyse the influence of biomass characteristics, mainly represented by the macromolecular composition in cellulose, hemicellulose and lignin, on the global behaviour of biomass in torrefaction, both in terms of solid mass loss and of productionprofiles of the volatile species released, in function of the operating conditions.14 biomasses from the main biomass families (deciduouswood, coniferous wood, agricultural byproductsand herbaceous crops) were selected for this study. An optimized extraction procedure was proposed to recover cellulose, hemicellulose and lignin fractions from 5 reference biomasses. Experiments were performed on a thermogravimetric analyzer coupled to a gas chromatography mass spectrometer device through a heated storage loop system (TGA-GC/MS). Solid degradation kinetics and volatile release profiles were followed during torrefaction experiments combining non-isothermal (200 to 300°C at 3°C/min) and isothermal (300°C, 30 min) conditions, ensuring the chemical regime thanks to the appropriate operating conditions. The results obtained with the raw materials demonstrated that biomass macromolecular composition is a main factor influencing biomass behavior in torrefaction. Consequently, the heterogeneity of the resource results in a diverse behavior in torrefaction, particularly in the case of agricultural biomasses. The results with the extracted components evidenced their very different behavior compared to thecommercial compounds, particularly in the case of cellulose. This suggests that a limitation could be induced by the common use in literature of commercial components for torrefaction modelling. The impact on the characterization of macromolecular components was also shown to be prevailing in their behavior in torrefaction, especially in the case of hemicellulose sugar composition and cellulose crystallinity. Furthermore, differences in release kinetics of volatile species during torrefaction were observed, even for volatiles belonging to the same chemical family (acids, furans, ketones). Derived from these results, a torrefaction model based on the additive contribution of extracted cellulose, hemicelluloses and lignin to the global behavior of biomass in torrefaction was proposed, and this for the 5 representative biomasses.
|
16 |
Kemin bakom framtidens avgasrening : En studie av ureasönderfall under kvävgasatmosfär / Chemistry behind future eftertreatmentLe, Tan January 2011 (has links)
The purpose of this work was to provide a better understanding of urea’s decomposition and byproduct formation in an SCR system on heavy trucks. In my experimental setup with TGA-DSC-FTIR (a combination of two thermal analysis methods and a method for gas phase detection), an FTIR method for urea in the gas phase was developed for the qualitative and quantitative determination of urea and its decomposition products. Chemicals such as urea, biuret, cyanuric acid and melamine of p.a. quality were used in this method development. Beforehand, there was no FTIR method available to detect these substances; hence, the aim of this work was to develop an FTIR method to understand the degradation chain of urea. The combination of TGA and DSC was used for analysis of different samples, where urea, biuret, cyanuric acid and melamine in varying amounts have been weighted in for various experiments in order to study the temperature at which a phase transition or reaction occurs, i.e. the temperature at which substances begin to melt, vaporize, decompose and react. In combination with FTIR, information was obtained for the appearance of substances at various temperatures. With FTIR, we have been able to develop unique infrared spectra of substances and along with weight loss in TGA the calibration of different substances has been achieved. These calibrations have been combined together to develop an FTIR method, which has been used for detection of the substances in the ongoing study of the reaction pathways. In this study we also investigated the degradation chain of urea in the presence of metals. Austenitic and ferritic silencer materials with different surface roughness were analyzed to study whether the metals have a catalytic function or effect on the byproduct formation. Those experiments have shown that a higher amount of urea was decomposed in contact with metal surface, i.e. a larger amount of NH3 and HNCO was formed. Biuret studies in the presence of metals appeared to give a higher formation of urea over the rougher surfaces (a larger amount of biuret was decomposed over the rougher surfaces), while experiments with cyanuric acid revealed a higher HNCO formation over ferrite than over austenite, i.e. a larger amount of cyanuric acid was decomposed. By the chosen method, used in FTIR in combination with TGA-DSC, the following important reactions have been demonstrated: Biuret decomposed to urea and HNCO; Urea decomposed into HNCO and NH3; formation of cyanuric acid from the decompositions of urea and biuret and finally decomposition of cyanuric acid into HNCO at a higher temperature.
|
17 |
Fused-Droplet Electrospray Ionization Mass Spectrometry Combined with Pyrolysis for Polarity and Organic Composition of Soil, Tobacco,and Humic AcidLi, Kuang-Feng 09 August 2004 (has links)
none
|
18 |
Fused-Droplet Electrospray Ionization Mass Spectrometry Combined with Pyrolysis for Polymers AnalysisChen, Ming-Fong 17 July 2002 (has links)
none
|
19 |
Incorporation of Phase Change Materials into Cementitious SystemsJanuary 2013 (has links)
abstract: Manufacture of building materials requires significant energy, and as demand for these materials continues to increase, the energy requirement will as well. Offsetting this energy use will require increased focus on sustainable building materials. Further, the energy used in building, particularly in heating and air conditioning, accounts for 40 percent of a buildings energy use. Increasing the efficiency of building materials will reduce energy usage over the life time of the building. Current methods for maintaining the interior environment can be highly inefficient depending on the building materials selected. Materials such as concrete have low thermal efficiency and have a low heat capacity meaning it provides little insulation. Use of phase change materials (PCM) provides the opportunity to increase environmental efficiency of buildings by using the inherent latent heat storage as well as the increased heat capacity. Incorporating PCM into concrete via lightweight aggregates (LWA) by direct addition is seen as a viable option for increasing the thermal storage capabilities of concrete, thereby increasing building energy efficiency. As PCM change phase from solid to liquid, heat is absorbed from the surroundings, decreasing the demand on the air conditioning systems on a hot day or vice versa on a cold day. Further these materials provide an additional insulating capacity above the value of plain concrete. When the temperature drops outside the PCM turns back into a solid and releases the energy stored from the day. PCM is a hydrophobic material and causes reductions in compressive strength when incorporated directly into concrete, as shown in previous studies. A proposed method for mitigating this detrimental effect, while still incorporating PCM into concrete is to encapsulate the PCM in aggregate. This technique would, in theory, allow for the use of phase change materials directly in concrete, increasing the thermal efficiency of buildings, while negating the negative effect on compressive strength of the material. / Dissertation/Thesis / M.S. Civil Engineering 2013
|
20 |
Erstellung eines BIM-konformen Workflows zur Konzeptionierung von Systemen der Heizungs-, Lüftungs- und Sanitärtechnik mithilfe von Modellierungs- und BerechnungssoftwareKienzler, Katrin, Nordheim, Friederike 27 April 2022 (has links)
In dieser Arbeit wird ein BIM-konformer Workflow zur Konzeptionierung von TGA-Systemen vorgestellt. Das Ziel ist es, den Studierenden der HTWK Leipzig ein Hilfsmittel und Nachschlagewerk bereitzustellen, das insbesondere für die Anwendung im Mastermodul „Digitalisierung im Bauwesen – BIM“ herangezogen wird. Die Erstellung erfolgte exemplarisch anhand eines Einfamilienhauses unter Verwendung der Softwareanwendungen Autodesk Revit, SolarComputer und auxalia CADstudio MEPprojectBox.:1 Einleitung
1.1 Zielstellung
1.2 Arbeitsaufteilung
2 Theoretische Grundlagen
2.1 Übersicht des BIM-konformen Workflows
2.2 Grundlagen für den erarbeiteten Inhalt
2.3 Grundlagen der betrachteten Software
3 BIM-konformer Workflow
3.1 Software
3.2 Struktur des Workflows
3.2.1 Allgemein
3.2.2 Vorbereitende Koordination
3.2.3 Planung der Heizungstechnik
3.2.4 Planung der Lüftungstechnik
3.2.5 Planung der Sanitärtechnik
3.2.6 Allgemeine Koordination
4 Analyse
4.1 Konzeptionierung des Workflows
4.2 Ausblick
5 Zusammenfassung
Literaturverzeichnis
Anhang
|
Page generated in 0.0267 seconds