• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 27
  • 17
  • 16
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 235
  • 36
  • 35
  • 35
  • 25
  • 25
  • 21
  • 20
  • 19
  • 19
  • 18
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Tidal and thermal propogation in the Port River estuary

Teubner, Michael David. January 1976 (has links) (PDF)
Includes bibliographical references (p.166-167)
82

A three-dimensional tidal model for shallow waters using transformations and variably spaced grids / by Malcolm William Stevens

Stevens, Malcolm William January 1990 (has links)
Bibliography: leaves 238-247 / xvii, 247 leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Applied Mathematics,1991
83

Barotropic depth-averaged and three-dimensional tidal programs for shallow seas / by Peter John Bills

Bills, Peter John January 1991 (has links)
Bibliography: leaves 363-374 / xxiii, 374 leaves : ill., maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Applied Mathematics, 1993
84

The ocean tide and waves beneath the Ross ice shelf, Antarctica

Williams, Richard T. 28 July 2010 (has links)
Widely spaced tidal gravity records have been used to determine the spatial and temporal variation of the ocean tide beneath the Ross Ice Shelf. Cotidal-coamplitude maps have been drawn for the six greatest harmonic constituents of the tide. These are K₁, P₁, O₁, M₂, S₂, and N₂. The tide is principally diurnal, the diurnal amplitudes being roughly 3 times longer than the semidiurnals. The range of the tropic tide is about 1 m at the northern extremity of the ice shelf, and can be as great as 2 m in the southeastern part of the region. The diurnal constituents can each be viewed as a wave that propagates towards the southwest across the sea, having an amplitude that is closely related to the thickness of the water-layer beneath the ice. For each of the semidiurnal constituents there is an amphidromic region located within the Ross 5ea near 80° S latitude, 1900 W longitude, and having a clockwise sense of rotation. Theoretical calculations of the tidal current indicate that the semidiurnal and diurnal current constituents have roughly the same amplitude. The semidiurnal current is magnified by near resonance with the inertia current due to the high latitude of the sea. Because of the resonance, calculations of the semidiurnal components of the tidal current are sensitive to the treatment of the retarding effects of the ice shelf and sea floor. Waves having periods shorter than 20 min were observed in the ice shelf. These have been identified as flexural waves that are generated by the action of the ocean swell on the northern edge of the shelf. The observed speed of these waves was predicted within the uncertainty of the measurement by the classical flexural wave theory. / Ph. D.
85

Development of a tidal constituent database for the St. Johns River Water Management District

Parrish, D. Michael 01 October 2001 (has links)
No description available.
86

Modeling of Historic Columbia River Flood Impacts Based on Delft 3D Simulations

Helaire, Lumas Terence 01 September 2016 (has links)
Natural and anthropogenic processes over the past 150 years have altered the bathymetry of the Lower Columbia River (LCR) and have changed the long wave propagation of tides and floods. Possible causes for the increase in tidal amplitudes (+7% in tidal range in Astoria) are decreases in river discharge, lengthening of the river channel due to the construction of jetties at the mouth, dredging and deepening of the shipping channel, and reduction of the tidal prism due to the filling and diking of tidal wetlands. In this study, changes in the characteristics of long waves are elucidated by developing two hydrodynamic models of the LCR which reflect historical and modern bathymetric conditions and forcing. The historic model simulates late 19th century conditions and is extensively validated using recently recovered tide records along the LCR (e.g., Astoria, 1853-1876) and river stage measurements (e.g., Portland, 1876-1964). Results suggest that water levels in Portland at low river discharge are up to 0.5-1.0m lower than in the past. However, historical water levels during a flood scenario based on the 1880 spring freshet are similar to modern water levels. Since tidal range in the modern scenario is persistently higher at all locations, the flood risk in many locations along the LCR has increased for the same boundary conditions. The results are explained by considering the governing equations of momentum and mass-conservation. At low river flow, greater depth leads to reduced frictional effects, producing amplified tidal range and tidal velocities but a decreased river slope (and lower Portland water levels). At high flow, the modern flood is confined by dikes and the loss of wetlands, which counteracts the effect of decreased friction. Nonetheless, the high friction of the historical wooded floodplain also confined the historical flood path. Hence, historical and modern flood heights are surprisingly similar, though scaling analysis suggests that the historical flood wave was more diffusive.
87

Comparison of the Martian thermospheric density and temperature from IUVS/MAVEN data and general circulation modeling

Medvedev, Alexander S., Nakagawa, Hiromu, Mockel, Chris, Yiğit, Erdal, Kuroda, Takeshi, Hartogh, Paul, Terada, Kaori, Terada, Naoki, Seki, Kanako, Schneider, Nicholas M., Jain, Sonal K., Evans, J. Scott, Deighan, Justin I., McClintock, William E., Lo, Daniel, Jakosky, Bruce M. 16 April 2016 (has links)
Newly released Imaging Ultraviolet Spectrograph/Mars Atmosphere and Volatile EvolutioN (IUVS/MAVEN) measurements of CO2 density in the Martian thermosphere have been used for comparison with the predictions of the Max Planck Institute Martian General Circulation Model (MPI-MGCM). The simulations reproduced (within one standard deviation) the available zonal mean density and derived temperature above 130 km. The MGCM replicated the observed dominant zonal wave number 3 nonmigrating tide and demonstrated that it represents a nonmoving imprint of the topography in the thermosphere. The comparison shows a great dependence of the simulated density and temperature to the prescribed solar flux, atomic oxygen abundances and gravity wave effects, with the former two being especially important in the thermosphere above 130 km and the latter playing a significant role both in the mesosphere and thermosphere.
88

Hydrodynamics, temperature and salinity in mangrove swamps in Mozambique

Hoguane, Antonio Mubango January 1996 (has links)
No description available.
89

Evidence of Tidal Effects in Some Pulsating Stars. I CC Andromedae and Sigma Scorpii

Fitch, W. S. 10 1900 (has links)
Analyses of the light variation of the 6 Scuti star CC Andromedae and of the radial velocity variation of the ß Canis Majoris star 6 Scorpii, a single -line spectroscopic binary, indicate that the long period modulations exhibited are caused by tidal deformations induced in the hydrogen and /or helium ionization zones of each primary by a faint companion, resulting in surface zonal variations of the amplitude and phase of each primary's normal radial pulsations. The variations in the tide raising potential calculated at the center of the apparent disk of o Scorpii correlate very strongly with the observed variations in the phase zero -point of the fundamental pulsation. It is suggested that all the ß Canis Majoris and 6 Scuti stars exhibiting long period modulation, and probably also the RR Lyrae stars showing a Blazhko effect, do so because of tidal perturbations induced by faint companions.
90

Investigation of baroclinic tides in the northern South China Sea

Guo, Chuncheng January 2013 (has links)
Baroclinic tides result from the interaction of barotropic tides with topography in stratified oceans. They play an important role in driving deep ocean mixing. In this research, investigations of the dynamics of baroclinic tides and internal solitary waves (ISWs) in the northern South China Sea (SCS) are conducted, mainly by means of the Massachusetts Institute of Technology general circulation model (MITgcm). Firstly, simulations of internal wave generation at the Luzon Strait (LS) are carried out. By conducting three-dimensional (3D), high-resolution experiments, it was found that the generated wave field features a multi-modal structure: large, pronounced ISWs of first mode (amplitude ~120 m) and second mode (amplitude ~120 m) were reproduced. The two north-south aligned ridges in the LS contribute together to the generation of the second mode ISWs, whereas the easternmost ridge of the two is responsible for the first mode ISWs. It was found that multiple generation mechanisms of internal waves could occur in this region, and overall it belongs to a mixed lee wave regime. A specific type of short internal waves arose during the 3D simulation. These ride on a second mode ISW with similar phase speed, trailing a first mode ISW. The short waves possess wavelengths of ~1.5 km and amplitudes of ~20 m, and only show up in the upper layer up to a depth of ~500 m. Scrutiny of the generation process showed that these short waves appear in two distinct regions and are produced due to two mechanisms, namely, the disintegration of an inclined baroclinic bore near the LS, and the overtaking of a second mode ISW in the deep water by a faster first mode ISW. Robust evidence has been sought from satellite imagery and by solving the theoretical Taylor-Goldstein Equation to verify their existence. The effects of superposition of multiple tidal harmonics (diurnal and semidiurnal) on the resultant ISW generation were investigated. It was first found that, by analyzing historical observational data, the occurrence of ISWs in the far-field always follow strong semidiurnal barotropic tidal peaks in the LS, regardless of whether it is the maximum for the diurnal or total tidal strength. However, modelling results of MITgcm and a linear internal tide generation model demonstrate that the diurnal tidal harmonics modulate the arrival time and amplitude of the propagating ISWs. Specifically, it leads to the emergence of the so-called A and B type ISWs and an alternation and transition between the two. Secondly, the shoaling process of ISWs in the northern SCS slope-shelf area is investigated. A series of two-dimensional (2D) experiments are set up to study the shoaling of a large-amplitude second mode concave ISW over a linear slope that resembles the SCS slope. Modelling results show that a strong transformation of the wave profile starts to take place when the wave is approaching the shelf break. A convex type wave is born at the trailing edge of the incident wave and gradually disintegrates into a group of ISWs due to the steepening of the rear wave profile. The frontal face of the wave gets flatter when travelling on the slope, but forms a steep structure right above the shelf break. However, this steep structure shows no tendency to evolve into an ISW: instead, it gets increasingly flat again while evolving on the shelf. The trailing convex wave packet travels faster and merges with the frontal concave wave. Finally, a wave packet with rank-ordered convex ISWs moves forward steadily on the shelf. Energy transfer to the ambient modes is evident, as both first mode and higher modes are clearly seen during and after the shoaling process. First mode ISW evolution is studied too by performing 3D, high-resolution experiments over the wide northern SCS slope and shelf area. It was found that the wave profiles change drastically near the shelf break and the Dongsha Atoll. In agreement with satellite imagery, the wavefront of the leading ISW becomes more spatially oblique with respect to its original orientation as it progresses westward due to the inclination of the slope in the topography. Wave disintegration is prominent in the shallow water zone, and wave polarity reverses near the turning point (at the 130 m isobath), which is consistent with the predictions of weakly nonlinear theory. A series of 2D experiments were set up to inspect the effects of rotation on the shoaling ISW. The results indicate that under the rotation, upon reaching the continental shelf, one shoaling ISW could disintegrate into one ISW packet and one secondary solibore that contains a number of rank-ordered waves with much shorter wavelength than an ISW. The secondary solibore is very pronounced in the northern portion of the northern SCS slope and shelf, but could hardly be discerned in the southern portion, which is consistent with the outcome of 3D simulations.

Page generated in 0.0145 seconds