101 |
An in situ neutron diffraction study of shape-memory NiTi during tensile and compressive loadingLittle, Adrian L. 01 January 2004 (has links)
No description available.
|
102 |
Microstructure and Mechanical Properties of Additive Manufacturing Titanium Alloys After Thermal ProcessingTanrikulu, Ahmet Alptug 21 December 2017 (has links)
Titanium alloys are widely used for aerospace and biomaterial applications since their high specific strength, and high corrosion resistivity. Besides these properties, titanium is an excellent biocompatible material widely used for internal body implants. Because the products have complex geometries in both applications, Additive Manufacturing (AM) methods have been recently applied for production. AM methods can process a direct 3-D shape of the final product, decrease total production time and cost. However, high residual stress of the final product limits the application of AM components, especially the ones that are exposed to cyclic loading. In the present study, the initial microstructures and impact toughness of Ti6Al4V processed by EBM and CMT, and CP:Ti processed by SLM were experimented. In addition to initial microstructure and impact toughness, their response to different heat treatments were examined. Gleeble® 3500 was used for rapid heat treatment process. The change of mechanical properties due to different heat treatments were monitored with impact tests. Phase transformation kinetics of CP:Ti and Ti6Al4V were investigated with a Differential Scanning Calorimeter at slow heating and cooling rates. Microstructure examination was done with a scanning electron microscope. EBSD data was used to analyze the microstructure behavior. It is observed that toughness of the samples that are produced by powder-based AM methods were improved. Overall, residual stress, strain values, and grain orientation are the key elements that affected impact toughness AM produced components.
|
103 |
Laser deposition of titanium and nickel intermetallic coatings on titanium for aerospace applications.Mokgalaka, Mokgadi Nomsa. January 2014 (has links)
M. Tech. Metallurgical Engineering / Titanium alloys exhibit poor tribological characteristic which include abrasion resistance, metal to metal wear resistance and solid particle erosion and cavitation due to low surface hardness and high coefficient of friction. These poor properties have limited the application of titanium alloys as engineering tribological components, tools and parts that operate in severe wear and friction conditions. Laser processing defects such as pores, cracks and segregation pose a huge threat to the quality and the microstructure of the deposited layer. Defects caused by the parameters lead to severe wear and corrosion occurrence, hence, precise control of the parameters are crucial and it depends on the properties of the material used. It is postulated that Nickel Titanium (NiTi) is a promising candidate as reinforcement matrix material for wear resistant alloy. The wear resistance would be further enhanced if NiTi is in-situ incorporated onto titanium matrix by laser cladding to yield hard intermetallic phases. The main goal of the study is to develop corrosive-wear resistant thin surface coatings on Ti-6Al-4V alloy for automotive and aerospace applications by depositing Titanium and Nickel elemental powders to form in-situ NiTi intermetallic using laser cladding technique.
|
104 |
Laser based in-situ formation of ceramic coatings on titanium.Ochonogor, Onyeka Franklin January 2013 (has links)
M. Tech. Metallurgical Engineering / Titanium and its alloys exhibit poor tribological characteristics. The poor resistance to sliding wear of Ti6Al4V alloy makes it susceptible to severe wear at the surface during sliding contact. This could cause galling and seizing during sliding contact. Ti6Al4V alloy also have poor corrosion resistance under critical conditions. Some problems with Ti6Al4V MMCs produced by laser cladding technique in most cases is poor bonding as a result of wetting properties between the ceramic and metal powders for reinforcement. Occurrence of porosity is another factor which can reduce the mechanical properties of MMCs. Occurrence of agglomerates is also a concern due to poor mixing of reinforcement powders. This project is aimed at investigating the effect of laser cladding of titanium alloy substrate with zirconium (Zr), titanium carbide (TiC), titanium (Ti) reinforcement additions. The effect of combination of these powders using various fractions and variable cladding parameters on the substrate will be investigated.
|
105 |
Computational modelling of TiPt and TiPtCo-M (M=Ta, V, Hf) shape memory alloysBaloyi, Mphamela Enos January 2021 (has links)
Thesis (M.Sc. (Physics)) -- University of Limpopo, 2021 / First-principles density functional theory has been used to study the stabilities of binary TiPt, TiTa, TiNi and TiCo potential shape memory alloys. Furthermore, ternary alloys Ti50Pt50-xMx with V, Ta, Hf and quaternary Ti50(PtCo)50-xTax systems were also investigated. The structural, electronic and mechanical properties were deduced to mimic the stabilities of these alloys. Furthermore, their vibrational stability, x-ray diffraction and temperature dependence have been examined.
The structures were subjected to full geometry optimization to obtain equilibrium lattice constants. It was found that the equilibrium lattice parameters for all the binary systems are in good agreement with experimental results to within 5%. The heats of formation (ΔHf) were calculated to determine the thermodynamic stability of the B2 TiM systems. It was revealed that TiPt is the most energetically favourable (most stable) whereas TiTa is the least favourable due to high ΔHf value (less stable). In addition, electronic properties suggest that TiPt, TiNi and TiCo systems are stable with TiTa being the least favourable consistent with the ΔHf. The elastic properties were also calculated to mimic the mechanical stability of these alloys. TiNi, TiCo and TiTa were found to be mechanical stable whereas TiPt is unstable. This behaviour is consistent with the phonon dispersion curves for TiPt and TiCo. TiCo structure, in particular is the most stable in line with the predicted phonon dispersion.
The effect of alloying on Ti50Pt50-xMx (M = V, Ta, Hf) ternary system was carried out using the supercell approach. It was observed that the lattice parameters decrease minimally with an increase in V and increases with an increase in Ta and Hf content. The structures
ii
become thermodynamically less stable with an increase in V, Ta and Hf content, as depicted by heats of formation. The shear modulus (C′) of Ti50Pt50-xMx increases with an increase in M (V, Ta and Hf) concentration suggesting mechanical stability of these alloys. This has been confirmed from the phonon curves where the phonon soft modes are reduced and tend to disappear with increasing content of the alloying elements. Thus the results suggest that the V, Ta and Hf addition reduces the transformation temperatures of the TiPt alloy as indicated by its higher shear modulus C′.
Furthermore, it was observed that the lattice parameters of the quaternary system decrease with an increase in Ta content in the system. Thus ΔHf of the B2 and B19 Ti50Pt43.75-xCo6.25Tax and B19 Ti50Pt31.25-xCo18.75Tax alloy system showed that the 6.25 at.% Ta addition is energetically most favourable (ΔHf<0). The DOS behaviour confirms that the 6.25 at.% Ta as least favourable whereas for B19, the 6.25 at.% Ta is most favourable. The elastic constants for B19 and B2 show the positive shear modulus (mechanical stability). Moreover, the phonon dispersions and phonon density of states for the B2 and B19 Ti50Pt43.75-xCo6.25Tax and Ti50Pt31.25-xCo18.75Tax were calculated and are consistent with the elastic constant.
The LAMMPS code was employed to investigate the temperature dependence of the B19 Ti50Pt43.75-xCo6.25Tax and Ti50Pt31.25-xCo18.75Tax structures. The martensitic to austenite transformation temperature decreases with an increase in Ta concentration. Temperature variations of the XRD patterns for the B19 are in reasonable agreement with predicted lattice parameters. / National Research Foundation (NRF) and Titanium centre of competence (TiCoC)
|
106 |
Microstructure-sensitive plasticity and fatigue of three titanium alloy microstructuresSmith, Benjamin Daniel 21 October 2013 (has links)
Titanium alloys are employed in many advanced engineering applications due to their exceptional properties, i.e., a high strength-to-weight ratio, corrosion resistance, and high temperature strength. The performance of titanium alloys is known to be strongly affected by its inherent microstructure, which forms as a result of its thermo-mechanical processing. These microstructures produce compromise relationships between beneficial and detrimental effects on the alloy's performance. To study these structure-property relationships, two distinct crystal plasticity algorithms have been calibrated to data acquired from cyclic deformation experiments performed on three different Ti microstructures: (1) Ti-6Al-4V beta-annealed , (2) Ti-18 solution-treated, age-hardened (STA), and (3) Ti-18 beta-annealed, slow-cooled, age-hardened (BASCA). The calibrated models have been utilized to simulate fatigue loading of variant microstructures to investigate the influence of mean grain size, crystallographic texture, and phase volume fraction. The driving force for fatigue crack nucleation and propagation is quantified through the calculation of relevant fatigue indicator parameters (FIPs) and radial correlation functions are employed to study the correlation between favorably oriented slip systems and the extreme value FIP locations. The computed results are utilized to observe fatigue performance trends associated with changes to key microstructural attributes.
|
107 |
Properties of titanium matrix composites reinforced with titanium boride powdersYuan, Fei (Fred), Materials Science & Engineering, Faculty of Science, UNSW January 2007 (has links)
Metal matrix composites can produce mechanical and physical properties better than those of the monolithic metal. Titanium alloys are widely used matrix materials as they can offer outstanding specific strength, corrosion resistance and other advantages over its competitors, such as aluminium, magnesium and stainless steel. In past decades, titanium matrix composites served in broad areas, including aerospace, military, automobile and biomedical industries. In this project, a revised powder metallurgy method, which contains cold isostatic pressing and hot isostatic pressing, was adopted to refine the microstructure of monolithic titanium. It was also used to manufacture titanium matrix composites. TiH2 powder was selected as the starting material to form Ti matrix and the reinforcements were sub-micron and nano-metric TiB particles. Mechanical properties and microstructure of commercial titanium composites exhaust valves from Toyota Motor Corporation have been studied as the reference of properties of titanium composites manufactured in this project. It has been shown that tensile strength and hardness of exhaust valves increase about 30% than those of similar matrix titanium alloys. Examination on powder starting materials of this project was also carried out, especially the dehydrogenation process shown in the DSC result. Mechanical properties and microstructures of titanium matrix composites samples in this project, as related to the process parameter, have also been investigated. The density of these samples reached 96% of theoretical one but cracks were found through out the samples after sintering. Fast heating rates during the processing was suspected to have caused the crack formation, since the hydrogen release was too fast during dehydrogenation. Hardness testing of sintered samples was carried out and the value was comparable and even better than that of commercial exhaust valves and titanium composites in literature. Microstructure study shows that the size of reinforcements increased and the size of grains decreased as the increasing amount of TiB reinforcements. And this condition also resulted in the increasing amount of the acicular alpha structure.
|
108 |
Sample size effects related to nickel, titanium and nickel-titanium at the micron size scaleNorfleet, David Matthew, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 162-169).
|
109 |
Transformações de fases e relação entre microestrutura e propriedades mecânicas de ligas Ti-Nb-Fe para aplicações biomédicas : concepção de implantes ortopédicos com rigidez gradual / Phase transformation and relationship between microstructure and mechanical properties of Ti-Nb-Fe for biomedical applications : design of orthopedic implants with graded stiffnessLopes, Éder Sócrates Najar, 1982- 23 August 2018 (has links)
Orientador: Rubens Caram Junior / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-23T09:33:56Z (GMT). No. of bitstreams: 1
Lopes_EderSocratesNajar_D.pdf: 9279894 bytes, checksum: a2ed77cd79f48134e7daf5bc705afb0e (MD5)
Previous issue date: 2013 / Resumo: Ligas de Ti do tipo ? metaestável exibem comportamento singular no tocante à possibilidade de manipulação de seu comportamento mecânico. Nessas ligas, a rigidez pode ser alterada por meio do controle das fases presentes, o que permite que esses materiais sejam incluídos no seleto grupo dos materiais com gradientes funcionais (functionally graded materials - FGM). Neste trabalho, objetivou-se projetar, produzir, processar, caracterizar e aplicar ligas Ti-Nb com adições do elemento ? estabilizador de baixo custo Fe. As ligas foram produzidas por fusão a arco voltaico e submetidas a diversas condições de tratamento térmico, incluindo solubilização acima da temperatura ?-transus, resfriamento rápido até a temperatura ambiente e tratamentos térmicos de envelhecimento entre 260 °C e 400 °C. A caracterização envolveu calorimetria diferencial de varredura, difração de raios-X e dureza Vickers em alta temperatura, análises metalográficas e de módulo de elasticidade por técnicas acústicas, ensaios de tração e mapeamento de rigidez por meio de nanoindentação. Os resultados obtidos mostram a retenção completa da fase ? para a liga Ti-30Nb-3Fe solubilizada e resfriada rapidamente e permitem também, compreender a decomposição da fase martensita ?" e a nucleação das fases ? e ?. A adição do elemento Fe tornou a cinética de transformação de fases bem mais lenta, propiciando, sob algumas condições, a supressão da fase ?, que é conhecida por aumentar a dureza em detrimento da ductilidade. Tais resultados foram utilizados no estabelecimento de condições ideais de processamento que permitem obter componentes ortopédicos com rigidez gradual. Finalmente, o conhecimento adquiro foi usado na fabricação de placas e parafusos de osteossíntese a partir da liga Ti-30Nb-3Fe com gradientes de funcionalidade / Abstract: Metastable ? Ti alloys exhibit singular behavior regarding the possibility of manipulating their mechanical behavior. In these alloys, the stiffness can be changed by controlling phases, which allows these materials to be included in the select group of functionally graded materials (FGM). This study aimed to design, produce, process, characterize and apply Ti-Nb alloys with addition of Fe, an inexpensive ? stabilizing element. These alloys were produced by arc melting and subjected to different heat treatment conditions, including solution above the ?- transus temperature, quenching to room temperature and aging heat treatments between 260 °C and 400 °C. Characterization involved differential scanning calorimetry, X-ray diffraction and Vickers hardness at high temperature, metallographic analyzes, elastic modulus by acoustic techniques, tensile test and stiffness mapping via nanoindentation. The results obtained show complete retention of the ? phase in the Ti-30Nb-3Fe alloy after solution in the ? field and rapid cooling to room temperature and also allow understanding martensite ?" decomposition and nucleation of the ? and ? phases. It was found that Fe additions make the phase transformation kinetics much slower, providing, for some conditions, suppression of the ? phase precipitation, which is known to increase the hardness at the expense of ductility. These results were used to establish optimal processing conditions, resulting in orthopedic component with graded stiffness. Finally, the knowledge acquired was used in the manufacturing of osteosynthesis plates and screws with functionality graded from the Ti-30Nb-3Fe / Doutorado / Materiais e Processos de Fabricação / Doutor em Engenharia Mecânica
|
110 |
Comparison of three nickel-titanium instruments and the step-down technique for preparing curved root canals韋曦, Wei, Xi. January 2000 (has links)
published_or_final_version / Dentistry / Master / Master of Dental Surgery
|
Page generated in 0.0348 seconds