1 |
Atomistic simulations of water confined in cementMutisya, Sylvia Mueni January 2018 (has links)
Orientador: Prof. Dr. Caetano Rodrigues Miranda / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, Santo André, 2018. / A pasta de cimento 'e um material complexo, heterog¿eneo e poroso com excelentes
propriedades que o tornam um aglutinante adequado para aplica¸c¿oes em
constru¸c¿oes. A qualidade e a durabilidade do cimento t¿em uma forte rela¸c¿ao com
a 'agua contida nele. Embora uma boa compreens¿ao das intera¸c¿oes complexas entre
os poros do cimento e os flu'ýdos confinados 'e necess'aria para resolver os atuais
problemas de durabilidade, at'e ent¿ao nenhum modelo foi bem sucedido na captura
de todos os processos e o papel da 'agua no cimento continua a ser uma 'area de
pesquisa ativa. Com o intuito de contribuir para a compreens¿ao atual da estrutura
do cimento, este trabalho se concentrou no estudo dos processos din¿amicos
que acontecem na nanoescala da 'agua confinada em poros de cimento. Utilizamos
simula¸c¿oes atom'ýsticas que v¿ao desde primeiros princ'ýpios at'e din¿amica molecular
para estudar a principal fase de hidrata¸c¿ao, ou seja, hidrato de silicato de c'alcio
(C¿S¿H), modelado por uma estrutura de tobermorita com defeitos. A partir de
primeiros princ'ýpios, investigamos a morfologia da superf'ýcie da tobermorita a qual
rege as intera¸c¿oes da 'agua com o modelo C-S-H. Demonstramos que a tobermorita
forma cristais pseudo-hexagonais e a faceta mais est'avel 'e a (004). A fim de explorar
sistemas maiores, checamos a transferabilidade do potencial cl'assico CLAYFF
na descri¸c¿ao dos componentes do cimento atrav'es de um estudo comparativo entre
simula¸c¿oes de mec¿anica molecular e DFT. Embora as frequ¿encias calculadas com
DFT e CLAYFF sejam diferentes, as propriedades estruturais e termodinâmicas
apresentam grande concord¿ancia, indicando que o potencial CLAYFF 'e adequado
para nossos c'alculos. Um par¿ametro importante para quantificar a din¿amica da
'agua no nanoconfinamento 'e o tempo de relaxa¸c¿ao T2. Para validar a metodologia
implementada na determina¸c¿ao te'orica do tempo de relaxa¸c¿ao T2, realizamos
simula¸c¿oes para a 'agua confinado dentro de nanoporos de calcita (1¿6 nm). Observamos
que a din¿amica translacional 'e a principal respons'avel pela relaxa¸c¿ao de
spin das mol'eculas de 'agua pr'oximas 'a superf'ýcie. O tempo de relaxa¸c¿ao T2 para
mol'eculas de 'agua adsorvidas na superf'ýcie 'e menor e independente do tamanho
de poro, no entanto, uma relaxa¸c¿ao de spin do tipo bulk 'e observada no centro
dos poros maiores que 3 nm. Buscando elucidar as diversas propriedades da 'agua
nanoconfinada em poros C¿S¿H, dividimos nosso estudo em tr¿es partes. Inicialmente,
nos dedicamos a compreender os efeitos de confinamento da 'agua entre
camadas (< 1 nm) e poros de gel (1¿5 nm) do modelo C-S-H, assim como suas
influ¿encias nas intera¸c¿oes de superf'ýcie. A natureza hidrof'ýlica da superf'ýcie C¿
S¿H 'e evidenciada pela din¿amica lenta da 'agua que interage diretamente com a
superf'ýcie. Entre as camadas, a 'agua se encontra praticamente im'ovel e exibe
propriedades similares aquelas observadas em 'agua super-resfriada. Na sequ¿encia,
investigamos o transporte da 'agua dentro da pasta de cimento implementando a
relaxa¸c¿ao de troca do tipo 2D T2¿T2 RMN entre poros de gel com 1 nm e 4 nm
conectados entre si. Nossos resultados mostraram que h'a trocas de mol'eculas de
'agua entre poros com um tempo caracter'ýstico de troca de 18 ns. Finalmente,
conclu'ýmos nossos estudos considerando a natureza particulada do C¿S¿H a fim
de estabelecer uma conex¿ao entre os fen¿omenos observados nas escalas nano e
meso. Demonstramos que a 'agua confinada dentro do ambiente C¿S¿H edge-edge
apresenta uma din¿amica semelhante ao caso das superf'ýcies planares. / Cement paste is a complex, heterogeneous and porous material with outstanding
properties that make it a suitable binder for construction applications. The
quality and durability of cement have a strong relationship with the water contained
in it. While a good understanding of the complex interactions between the
cement pores and the confined fluids is necessary to solve the current durability
issues, no single model has been successful in capturing all the processes so far and
the role of water in cement still remains an area of active research. To contribute to
the current understanding of cement structure, this work has focused on studying
the dynamical processes happening at the nanoscale of water confined in cement
pores. We employ atomistic simulations ranging from first principles to molecular
dynamics to study the main hydration phase, i.e calcium silicate hydrate (C¿S¿H),
modeled by a defected tobermorite structure. Starting from first principles, the
surface morphology of tobermorite which governs the interactions of water with the
C¿S¿H model was investigated. It was shown that tobermorite forms pseudohexagonal
crystals and the most stable facet is the (004). To upscale the calculations,
the transferability of CLAYFF in the description of cementitious materials was
tested through a comparative molecular mechanics and DFT study. Although the
frequencies calculated with DFT and CLAYFF differ, the structures and thermodynamic
quantities agree quite well, making CLAYFF a reasonable potential for
our cement calculations. An important parameter to quantify water dynamics
in nanoconfinement is NMR T2 relaxation time. To underpin the implemented
methodology for theoretical determination of T2 relaxation time, simulations were
performed for water confined within calcite nanopores (1¿6 nm). It was revealed
that translational dynamics are the main contribution to spin relaxation of near
surface water molecules. The T2 relaxation time for water molecules directly adsorbed
on the surface is short and pore size independent, however a bulk¿like spin
relaxation is observed at center of pores larger than 3 nm. To disentangle the diverse
properties of water nanoconfined in C¿S¿H pores, the study of water within
C¿S¿H was subdivided into three parts. The first part was dedicated to understanding
the relative effect of the C¿S¿H surface and progressive confinement to
water confined in the interlayer (< 1 nm) and gel pores (1¿5 nm) of C¿S¿H model.
The hydrophilic nature of the C¿S¿H surface is evidenced by the slow dynamics
for the water interacting directly with the surface. Within the interlayer, water is
highly immobile and exhibits similar properties as those observed in supercooled
water. Next, transport within cement paste was investigated by implementing 2D
T2¿T2 NMR exchange relaxation between a 1 nm and 4 nm gel connected pores.
We showed that there is water exchange in gel pores quantified by an exchange
time of 18 ns. Lastly, the particulate nature of C¿S¿H is taken into consideration
to facilitate bridging the gap between the atomistic and the mesoscale cement
understanding. It was shown that water confined within the C¿S¿H edge¿edge
environment portrays similar dynamics as in the C¿S¿H planar surfaces.
|
Page generated in 0.0243 seconds