• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 15
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 98
  • 51
  • 48
  • 30
  • 27
  • 20
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Motion Detection and Correction in Magnetic Resonance Imaging

Maclaren, Julian Roscoe January 2007 (has links)
Magnetic resonance imaging (MRI) is a non-invasive technique used to produce high-quality images of the interior of the human body. Compared to other imaging modalities, however, MRI requires a relatively long data acquisition time to form an image. Patients often have difficulty staying still during this period. This is problematic as motion produces artifacts in the image. This thesis explores the methods of imaging a moving object using MRI. Testing is performed using simulations, a moving phantom, and human subjects. Several strategies developed to avoid motion artifact problems are presented. Emphasis is placed on techniques that provide motion correction without penalty in terms of acquisition time. The most significant contribution presented is the development and assessment of the 'TRELLIS' pulse sequence and reconstruction algorithm. TRELLIS is a unique approach to motion correction in MRI. Orthogonal overlapping strips fill k-space and phase-encode and frequency-encode directions are alternated such that the frequency-encode direction always runs lengthwise along each strip. The overlap between pairs of orthogonal strips is used for signal averaging and to produce a system of equations that, when solved, quantifies the rotational and translational motion of the object. Acquired data is then corrected using this motion estimation. The advantage of TRELLIS over existing techniques is that k-space is sampled uniformly and all collected data is used for both motion detection and image reconstruction. This thesis presents a number of other contributions: a proposed means of motion correction using parallel imaging; an extension to the phase-correlation method for determining displacement between two objects; a metric to quantify the level of motion artifacts; a moving phantom; a physical version of the ubiquitous Shepp-Logan head phantom; a motion resistant data acquisition technique; and a means of correcting for T2 blurring artifacts.
12

TRELLIS a blog-based approach to the development, organization, and visualization of ideas /

Felix, Michael Gordon, January 2007 (has links) (PDF)
Thesis (M.S.)--Auburn University, 2007. / Abstract. Includes bibliographic references (ℓ. 91-94)
13

Modified Viterbi decoding algorithms for high dimensional trellis coded modulation

Huang, Zhiyong. January 2003 (has links)
Thesis (M.S.)--Ohio University, November, 2003. / Title from PDF t.p. Includes bibliographical references (leaves 68-70).
14

Exact BER Calculation of TCM-MAPSK using Pairwise Probability of Product Trellis Algorithm for DVB Applications

Iyamabo, Philip Ehizogie January 2016 (has links)
No description available.
15

REDUCED COMPLEXITY TRELLIS DETECTION OF SOQPSK-TG

Nelson, Tom 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / The optimum detector for shaped offset QPSK (SOQPSK) is a trellis detector which has high complexity (as measured by the number of detection filters and trellis states) due to the memory inherent in this modulation. In this paper we exploit the cross-correlated, trellis-coded, quadrature modulation (XTCQM) representation of SOQPSK-TG to formulate a reduced complexity detector. We show that a factor of 128 reduction in the number of trellis states of the detector can be achieved with a loss of only 0.2 dB in bit error rate performance as compared to optimum at P(b) = 10^(-5).
16

PERFORMANCE COMPARISON OF SOQPSK DETECTORS: COHERENT VS. NONCOHERENT

Bruns, Tom 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Shaped Offset Quadrature Shift Keying (SOQPSK) is a spectrally efficient modulation that has been promoted in the airborne telemetry community as a more spectrally efficient alternative for legacy PCM/FM. First generation demodulators for SOQPSK use coherent detectors which achieve good bit error rates at the expense of long synchronization times. This paper examines the performance of a noncoherent SOQPSK detector which significantly improves the signal acquisition times without impacting BER performance in the AWGN environment. The two detection methods are also compared in their ability to combat other channel impairments, such as adjacent and on-channel interference.
17

VITERBI AND SERIAL DEMODULATORS FOR PRE-CODED BINARY GMSK

Lui, Gee L., Tsai, Kuang 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Three different demodulators applicable to the coherent demodulation of binary Gaussian Minimum Shift Keying (GMSK) signal are described and their performance compared. These include a near-optimal trellis demodulator, which utilizes two matched filters and Viterbi algorithm to carry out maximum likelihood sequence estimation, and a singlefilter threshold demodulator with and without pulse equalization. The performance of these demodulators in noise and adjacent channel interference (ACI) are compared for several signal BT products. The equalized threshold demodulator is shown to perform nearly as well as the near-optimal trellis demodulator in additive white Gaussian noise (AWGN), and substantially outperform the trellis demodulator under severe ACI condition.
18

ENHANCED PERFORMANCE OF FQPSK-B RECEIVER BASED ON TRELLIS-CODED VITERBI DEMODULATION

Lee, Dennis, Simon, Marvin, Yan, Tsun-Yee 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / Commercial FQPSK-B receivers traditionally use symbol-by-symbol detection and have a 2 dB Eb=No loss relative to ideal QPSK at a bit error rate (BER) of 10^(-5). An enhanced FQPSK-B receiver using a Viterbi algorithm (VA) to perform trellis decoding is simulated and shown to have a 1.2 dB Eb=No improvement over symbol-by-symbol detection for 10^(-5)5 BER at the cost of increased complexity. A simplified Viterbi receiver with a reduced trellis and significantly less complexity is introduced with only a slight BER degradation compared to the full Viterbi receiver. In addition, a theoretical bit error probability expression for the symbol-by-symbol FQPSK-B receiver is derived and compared with simulation results.
19

Soft Detection of Trellis Coded CPM in Frequency-SelectiveChannels

Pham, Tri January 2012 (has links)
Non-linear continuous phase modulation has constant envelope and spectral efficiency, which are desirable for public safety communication systems where both bandwidth and power are limited. A practical design of an innovation based receiver for partial response CPM was recently developed for public safety applications. It is in the form of a linear predictive demodulator with a coefficient look up table. The demodulator shows great performance over multipath fading channels without channel equalization and promises a significant contribution to public safety communication. The work in this thesis is focussed on developing and analyzing modern techniques to improve the receiver performance while maintaining a feasible implementation complexity. Suitable soft output algorithms are incorporated into the demodulator allowing a subsequent convolutional decoder to perform soft decoding. By modifying the design criteria of the predictive demodulator and introducing a feedback loop, an iterative detection scheme is formed for the concatenated structure of demodulator, deinterleaver and decoder. Spatial diversity combining techniques are summarized and a very low complexity combining scheme is developed. It selects the best received sample sequence by considering the average energy of each sequence. In addition, the demodulator is extended to have dual coefficient look up tables supporting its detection by having parallel prediction processes and combining their results. This leads to an improvement in overall demodulator performance. A theoretical proof that only half the number of coefficients need to be stored in memory is also given. Matlab simulations on a Rayleigh fast fading multipath channel have shown that the proposed techniques significantly improve the overall detection accuracy. Each of them provides a good gain in signal to noise ratio or delay spread and when combined, a significant performance gain is achieved.
20

Low spectral efficiency trellis coded modulation systems

Pyloudis, Konstantinos 09 1900 (has links)
Trellis-coded modulation (TCM) is a known technique to increase the data rate without increasing the channel bandwidth when implementing error correction coding. TCM is a combination of M-ary modulation and error correction coding. This thesis investigates the performance of a low spectral efficiency TCM system, which is compared with three alternative systems having comparable bandwidth. The three alternative systems are all non-TCM systems and consist of QPSK with independent r=1/2 error correction coding on the in-phase and quadrature components, 8-ary biorthogonal keying (8-BOK) with r=2/3 error correction coding, and 16-BOK with r=3/4 error correction coding. The effects of both additive white Gaussian noise (AWGN) and pulse-noise interference (PNI) are considered. The TCM system shows much better than expected performance and significant resistance to PNI, and performance improves as the number of memory element increases. The alternative QPSK system with soft decision decoding (SDD) experiences significant degradation with PNI. The 8-BOK with r=2/3 error correction and 16-BOK with r=3/4 error correction systems occupy approximately the same bandwidth as the TCM system and show better performance in PNI than the alternative QPSK system.

Page generated in 0.021 seconds