• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 6
  • 2
  • Tagged with
  • 23
  • 13
  • 13
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spektroskopische Untersuchungen zur Komplexbildung von Cm(III) und Eu(III) mit organischen Modellliganden sowie ihrer chemischen Bindungsform in menschlichem Urin (in vitro)

Heller, Anne 23 August 2011 (has links) (PDF)
Dreiwertige Actinide (An(III)) und Lanthanide (Ln(III)) stellen im Falle ihrer Inkorporation eine ernste Gefahr für die Gesundheit des Menschen dar. An(III) sind künstlich erzeugte, stark radioaktive Elemente, die insbesondere bei der nuklearen Energiegewinnung in Kernkraftwerken entstehen. Durch Störfälle oder nicht fachgerechte Lagerung radioaktiven Abfalls können sie in die Umwelt und die Nahrungskette des Menschen gelangen. Ln(III) sind hingegen nicht radioaktive Elemente, die natürlicherweise vorkommen und für vielfältige Anwendungen in Technik und Medizin abgebaut werden. Folglich kann der Mensch sowohl mit An(III) als auch Ln(III) in Kontakt kommen bzw. sie inkorporieren. Es ist daher von enormer Wichtigkeit, das Verhalten dieser Elemente im menschlichen Körper aufzuklären. Während makroskopische Vorgänge wie Verteilung, Anreicherung und Ausscheidung bereits sehr gut untersucht sind, ist das Wissen hinsichtlich der chemischen Bindungsform (Speziation) von An(III) und Ln(III) in Körperflüssigkeiten noch sehr lückenhaft. In der vorliegenden Arbeit wurde daher erstmals die chemische Bindungsform von Cm(III) und Eu(III) in natürlichem menschlichem Urin (in vitro) spektroskopisch aufgeklärt und die gebildeten Komplexe identifiziert. Hierzu wurden auch grundlegende Untersuchungen zur Komplexierung von Cm(III) und Eu(III) in synthetischem Modellurin sowie mit den urinrelevanten organischen Modellliganden Harnstoff, Alanin, Phenylalanin, Threonin und Citrat durchgeführt und die noch unbekannten Komplexbildungskonstanten bestimmt. Abschließend wurden alle experimentellen Ergebnisse mit Literaturdaten und Vorherberechnungen mittels thermodynamischer Modellierung verglichen. Auf Grund der hervorragenden Lumineszenzeigenschaften von Cm(III) und Eu(III) konnte insbesondere auch die Eignung der zeitaufgelösten laserinduzierten Fluoreszenzspektroskopie (TRLFS) als Methode zur Untersuchung dieser Metallionen in unbehandelten, komplexen biologischen Flüssigkeiten demonstriert werden. Die Ergebnisse dieser Arbeit liefern damit neue Erkenntnisse zu den biochemischen Reaktionen von An(III) und Ln(III) in Körperflüssigkeiten auf molekularer Ebene und tragen zu einem besseren Verständnis der bekannten, makroskopischen Effekte dieser Elemente bei. Darüber hinaus sind sie die Grundlage weiterführender in-vivo-Untersuchungen.
2

Spektroskopische Untersuchungen zur Komplexbildung von Cm(III) und Eu(III) mit organischen Modellliganden sowie ihrer chemischen Bindungsform in menschlichem Urin (in vitro)

Heller, Anne January 2011 (has links)
Dreiwertige Actinide (An(III)) und Lanthanide (Ln(III)) stellen im Falle ihrer Inkorporation eine ernste Gefahr für die Gesundheit des Menschen dar. An(III) sind künstlich erzeugte, stark radioaktive Elemente, die insbesondere bei der nuklearen Energiegewinnung in Kernkraftwerken entstehen. Durch Störfälle oder nicht fachgerechte Lagerung radioaktiven Abfalls können sie in die Umwelt und die Nahrungskette des Menschen gelangen. Ln(III) sind hingegen nicht radioaktive Elemente, die natürlicherweise vorkommen und für vielfältige Anwendungen in Technik und Medizin abgebaut werden. Folglich kann der Mensch sowohl mit An(III) als auch Ln(III) in Kontakt kommen bzw. sie inkorporieren. Es ist daher von enormer Wichtigkeit, das Verhalten dieser Elemente im menschlichen Körper aufzuklären. Während makroskopische Vorgänge wie Verteilung, Anreicherung und Ausscheidung bereits sehr gut untersucht sind, ist das Wissen hinsichtlich der chemischen Bindungsform (Speziation) von An(III) und Ln(III) in Körperflüssigkeiten noch sehr lückenhaft. In der vorliegenden Arbeit wurde daher erstmals die chemische Bindungsform von Cm(III) und Eu(III) in natürlichem menschlichem Urin (in vitro) spektroskopisch aufgeklärt und die gebildeten Komplexe identifiziert. Hierzu wurden auch grundlegende Untersuchungen zur Komplexierung von Cm(III) und Eu(III) in synthetischem Modellurin sowie mit den urinrelevanten organischen Modellliganden Harnstoff, Alanin, Phenylalanin, Threonin und Citrat durchgeführt und die noch unbekannten Komplexbildungskonstanten bestimmt. Abschließend wurden alle experimentellen Ergebnisse mit Literaturdaten und Vorherberechnungen mittels thermodynamischer Modellierung verglichen. Auf Grund der hervorragenden Lumineszenzeigenschaften von Cm(III) und Eu(III) konnte insbesondere auch die Eignung der zeitaufgelösten laserinduzierten Fluoreszenzspektroskopie (TRLFS) als Methode zur Untersuchung dieser Metallionen in unbehandelten, komplexen biologischen Flüssigkeiten demonstriert werden. Die Ergebnisse dieser Arbeit liefern damit neue Erkenntnisse zu den biochemischen Reaktionen von An(III) und Ln(III) in Körperflüssigkeiten auf molekularer Ebene und tragen zu einem besseren Verständnis der bekannten, makroskopischen Effekte dieser Elemente bei. Darüber hinaus sind sie die Grundlage weiterführender in-vivo-Untersuchungen.
3

The Mobilization of Actinides by Microbial Ligands Taking into Consideration the Final Storage of Nuclear Waste - Interactions of Selected Actinides U(VI), Cm(III), and Np(V) with Pyoverdins Secreted by Pseudomonas fluorescens and Related Model Compounds (Final Report BMBF Project No.: 02E9985)

Glorius, M., Moll, H., Bernhard, G., Roßberg, A., Barkleit, A. 31 March 2010 (has links) (PDF)
The groundwater bacterium Pseudomonas fluorescens (CCUG 32456) isolated at a depth of 70 m in the Äspö Hard Rock Laboratory secretes a pyoverdin-mixture with four main components (two pyoverdins and two ferribactins). The dominant influence of the pyoverdins of this mixture could be demonstrated by an absorption spectroscopy study. The comparison of the stability constants of U(VI), Cm(III), and Np(V) species with ligands simulating the functional groups of the pyoverdins results in the following order of complex strength: pyoverdins (PYO) > trihydroxamate (DFO) > catecholates (NAP, 6­HQ) > simple hydroxamates (SHA, BHA). The pyoverdin chromophore functionality shows a large affinity to bind actinides. As a result, pyoverdins are also able to complex and to mobilize elements other than Fe(III) at a considerably high efficiency. It is known that EDTA may form the strongest actinide complexes among the various organic components in nuclear wastes. The stability constants of 1:1 species formed between Cm(III) and U(VI) and pyoverdins are by a factor of 1.05 and 1.3, respectively, larger compared to the corresponding EDTA stability constants. The Np(V)-PYO stability constant is even by a factor of 1.83 greater than the EDTA stability constant. The identified Np(V)-PYO species belong to the strongest Np(V) species with organic material reported so far. All identified species influence the actinide speciation within the biologically relevant pH range. The metal binding properties of microbes are mainly determined by functional groups of their cell wall (LPS: Gram-negative bacteria and PG: Gram-positive bacteria). On the basis of the determined stability constants raw estimates are possible, if actinides prefer to interact with the microbial cell wall components or with the secreted pyoverdin bioligands. By taking pH 5 as an example, U(VI)-PYO interactions are slightly stronger than those observed with LPS and PG. For Cm(III) we found a much stronger affinity to aqueous pyoverdin species than to functional groups of the cell wall compartments. A similar behavior was observed for Np(V). This shows the importance of indirect interaction processes between actinides and bioligands secreted by resident microbes.
4

Zur Wechselwirkung von Uran mit den Bioliganden Citronensäure und Glucose

Steudtner, Robin 25 March 2011 (has links) (PDF)
Um das Verhalten von Actiniden im Menschen (Stoffwechsel), in geologischen und in biologischen Systemen vorherzusagen, ist es erforderlich deren Speziation genau zu kennen. Zur Bestimmung dieser wird das chemische Verhalten des Urans hinsichtlich Komplexbildungsreaktionen und Redoxreaktionen in Modellsystemen untersucht. Anhand der gewonnenen thermodynamischen Konstanten und dem Redoxverhalten können Risikoabschätzungen für das jeweilige untersuchte System getroffen werden. Das umweltrelevante Uran(IV)-Uran(VI)-Redoxsystem besitzt mit der metastabilen fünfwertigen Oxidationsstufe einen zumeist kurzlebigen Zwischenzustand. Innerhalb dieser Arbeit gelang es erstmalig die Uran(V)-Fluoreszenz mittels laserspektroskopischer Methoden nach zu weisen. Beispielsweise konnte das Bandenmaximum von aquatischem Uranyl(V) im perchlorhaltigem Medium (λex = 255 nm) mit 440 nm, bei einer Fluoreszenzlebensdauer von 1,10 ± 0,02 µs bestimmt werden. Die fluoreszenzspektroskopische Untersuchung eines aquatischen [U(V)O2(CO3)3]5--Komplexes (λex= 255 nm und 408 nm) zeigte bei Raumtemperatur keine Fluoreszenz. Durch Anwendung der Tieftemperaturtechnik wurden bekannte Quencheffekte des Carbonats unterdrückt, so dass bei beiden Anregungswellenlängen ein für Uran(V) typisches Fluoreszenzspektrum im Bereich von 375 nm bis 450 nm, mit Bandenmaxima bei 401,5 nm (λex = 255 nm) und 413,0 nm (λex = 408 nm) detektiert werden konnte. Darüber hinaus konnte bei 153 K (λex = 255 nm) eine Fluoreszenzlebensdauer von 120 ± 0,1 µs bestimmt werden. Untersetzt wurden diese fluoreszenzspektroskopischen Nachweise durch mikroskopische Studien verschiedener Uran(IV)-Festphasen (Uraninit…UO2, Uran(IV) Tetrachlorid…UCl4) und einer sulfathaltigen Uran(IV)-Lösung (UIVSO4). Diese wurden durch kontinuierliche Sauerstoffzufuhr zu Uran(VI) oxidiert. Die ablaufende Oxidation wurde mit dem konfokalen Laser Scanning Mikroskop (CLSM) verfolgt, wobei die Proben mit einer Wellenlänge von 408 nm zur Fluoreszenz angeregt wurden. Die auftretenden Bandenmaxima bei 445,5 nm (UO2), bei 445,5 nm (UCl4) und bei 440,0 nm (UIVSO4) konnten eindeutig der Uran(V)-Fluoreszenz zugeordnet werden. Zur Bestimmung thermodynamischer Konstanten mit Hilfe der Tieftemperaturfluoreszenz wurde zunächst der Einfluss der Temperatur auf das Fluoreszenzverhalten des freien Uranyl(VI)-Ions näher betrachtet. Es zeigte sich, dass mit Erwärmung der Probe (T>298 K) die Fluoreszenzlebensdauer von 1,88 µs (298 K) deutlich absinkt. Die Fluoreszenzintensität verringerte sich dabei um 2,3 % pro 1 K zwischen 273 K und 313 K. Im Gegensatz dazu, steigt die Fluoreszenzlebensdauer um das 150-fache auf 257,9 µs bei einer Verminderung der Temperatur (T <298 K) auf 153 K. Das weitere Absenken der Temperatur (T <153 K) zeigte keinen Einfluss auf die Fluoreszenzlebensdauer. Die Lage der Hauptemissionsbanden des freien Uranyl(VI)-Ions (488,0 nm, 509,4 nm, 532,4 nm, 558,0 nm, 586,0 nm) zeigte bei diesen Untersuchungen keine temperaturabhängige Verschiebung. Die Validierung der Tieftemperaturtechnik zur Bestimmung thermodynamischer Konstanten mittels zeitaufgelöster laserinduzierten Fluoreszenzspektroskopie erfolgte anhand des Uran(VI)-Citrat-Systems. Im Gegensatz zu bisherigen fluoreszenzspektroskopischen Betrachtungen bei Raumtemperatur wurde das Fluoreszenzsignal bei tiefen Temperaturen mit einsetzender Komplexierung nicht gequencht, woraus die Ausprägung einer gut interpretierbaren Fluoreszenz resultierte. Die Analyse der spektralen Daten mit SPECFIT ergaben mit log β101 = 7,24 ± 0,16 für den [UO2(Cit)]--Komplex und log β202 = 18,90 ± 0,26 für den [(UO2)2(Cit)2]2 -Komplex exakt die in der Literatur angegebenen Stabilitätskonstanten. Zudem konnten Einzelkomponentenspektren mit Bandenmaxima bei 475,3 nm, 591,8 nm, 513,5 nm, 537,0 nm und 561,9 nm für den 1:0:1-Komplex und 483,6 nm, 502,7 nm, 524,5 nm, 548,1 nm und 574,0 nm für den 2:0:2-Komplex und Fluoreszenzlebensdauern von 79 ± 15 µs (1:0:1) und 10 ± 3 µs (2:0:2) bestimmt werden. Zur Modellkomplexierung des Uran-Citrat-Systems wurde in dieser Arbeit auch das Komplexbildungsverhalten von U(IV) in Gegenwart von Citronensäure untersucht. Hierbei wurden über den gesamten pH-Wertbereich gelöste Uran-Citrat-Spezies spektroskopisch nachgewiesen und die Stabilitätskonstanten sowie die Einzelkomponentenspektren für die neu gebildeten Uran(IV) und (VI)-Spezies bestimmt. Für die neu gebildeten Citrat-Komplexe des sechswertigen Urans wurden Komplexbildungskonstanten von log β203 = 22,67 ± 0,34 ([(UO2)2(Cit)3]5-) und log β103 = 12,35 ± 0,22 ([UO2(Cit)3]7-) und für die Komplexe des vierwertigen Urans von log β1-21 = -9,74 ± 0,23 ([U(OH)2Cit]-) und log β1 31 = -20,36 ± 0,22 ([U(OH)3Cit]2-) bestimmt. Untersuchungen zum Redoxverhalten von Uran in Gegenwart von Citronensäure zeigten unter aeroben und anaeroben Versuchsbedingungen eine photochemische Reduktion vom U(VI) zu U(IV), welche spektroskopisch nachgewiesen werden konnte. Dabei zeigt speziell die Reaktion unter oxidierenden Bedingungen, welchen großen Einfluss vor allem organischen Liganden auf das chemische Verhalten des Urans haben können. Sowohl die Reduktion unter O2- als auch die unter N2-Atmosphäre, weisen ein Maximum bei einem pH Wert von 3,5 bis 4 auf. Unter anaeroben Bedingungen reduziert die Citronensäure mit ca. 66 %, 14 % mehr Uran(VI) zu Uran(IV) als unter anaeroben Bedingungen mit ca. 52 %. Ab einem pH-Wert von 7 konnte eine Reduktion nur unter sauerstofffreien Bedingungen festgestellt werden. Die Wechselwirkung von U(VI) in Gegenwart von Glucose wurde hinsichtlich Reduktion und Komplexierung des Uran(VI) betrachtet. Mit Hilfe der zeitaufgelösten laserinduzierten Fluoreszenzspektroskopie bei tiefen Temperaturen wurde dabei ein Uranyl(VI)-Glucose-Komplex nachgewiesen. Die Komplexierung wurde lediglich bei pH 5 beobachtet und weist eine Komplexbildungskonstante von log βI=0,1 M = 15,25 ± 0,96 für den [UO2(C6H12O6)]2+-Komplex auf. Mit einer Fluoreszenzlebensdauer von 20,9 ± 2,9 µs und den Hauptemissionsbanden bei 499,0nm, 512,1 nm, 525,2 nm, 541,7 nm und 559,3 nm konnte der Uranyl(VI)-Glucose-Komplex fluoreszenzspektroskopisch charakterisiert werden. Unter reduzierenden Bedingungen wurde, ab pH-Wert 4 eine auftretende Umwandlung vom sechswertigen zum vierwertigen Uran durch Glucose in Gegenwart von Licht beobachtet. Der Anteil an gebildetem Uran(IV) steigt asymptotischen bis zu einem pH-Wert von 9, wo das Maximum mit 16 % bestimmt wurde. Als Reaktionsprodukt der Redoxreaktion wurde eine Uran(VI)-Uran(IV)-Mischphase mit der Summenformel [UIV(UVIO2)5(OH)2]12+ identifiziert. Mit Hilfe der cryo-TRLFS wurde, durch Verminderung von Quencheffekten die Uranspeziation in natürlichen Medien (Urin, Mineralwasser) direkt bestimmt. Proben mit Uran Konzentrationen von < 0,1 µg/L konnten dadurch analysiert werden. In handelsüblichen Mineralwässern wurde die zu erwartende Komplexierung durch Carbonat nachgewiesen. Im Urin zeigte sich in Abhängigkeit vom pH-Wert eine unterschiedliche Uranspeziation. Die fluoreszenzspektroskopische Untersuchung wies bei niedrigerem pH Wert (pH<6) eine Mischung aus Citrat- und Phosphat-Komplexierung des U(VI) und bei höheren pH-Wert (pH>6) eine deutliche Beteilung von Carbonat an der Komplexierung auf. Diese Ergebnisse stehen in sehr guter Übereinstimmung mit theoretischen Modellrechnungen zur Uranspeziation im Urin. Die in dieser Arbeit gewonnenen Ergebnisse zeigen, dass für eine zuverlässigere Prognose des Urantransportes in Geo- und Biosphäre in Zukunft nicht nur Betrachtungen zur Komplexchemie, sondern auch zum Redoxverhalten des Urans nötig sind, um die Mobilität in der Natur richtig abschätzen zu können.
5

Zur Aufnahme und Bindung von U(VI) durch die Grünalge Chlorella vulgaris

Vogel, Manja 23 August 2011 (has links) (PDF)
Uran kann sowohl durch geogene als auch anthropogene Vorgänge in die Umwelt gelangen. Dazu zählen natürliche Uranerzvorkommen und deren Leaching sowie die Auswaschung von Uran aus den Hinterlassenschaften des ehemaligen Uranerzbergbaus. Die Aufklärung des Verhaltens von Uran in der Geo- und Biosphäre ist für eine Risikoabschätzung des Migrationsverhaltens von Radionukliden in der Umwelt notwendig. Algen sind in der Natur weit verbreitet und die wichtigste Organismengruppe in den aquatischen Lebensräumen. Durch ihre ubiquitäre Verbreitung in der Natur ist ihr Einfluss auf das Migrationsverhalten von Uran in der Umwelt von grundlegendem Interesse z.B. um effektive und wirtschaftliche Remediationsstrategien für Wässer zu entwickeln. Außerdem stehen Algen am Beginn der Nahrungskette und spielen eine wirtschaftlich relevante Rolle als Nahrung beziehungsweise Nahrungsergänzungsmittel. Die Möglichkeit des Transfers von algengebundenem Uran entlang der Nahrungskette könnte eine ernsthafte Gesundheitsgefahr für den Menschen darstellen. Das Ziel dieser Arbeit war die quantitative und strukturelle Charakterisierung der Wechselwirkung zwischen Uran(VI) und der Grünalge Chlorella vulgaris im umweltrelevanten Konzentrations- und pH-Wertbereich unter besonderer Berücksichtigung der Stoffwechselaktivität. Die in dieser Arbeit erzielten Ergebnisse der Sorptionsexperimente zeigen deutlich den maßgeblichen Einfluss des Stoffwechselstatus von Chlorella auf die Wechselwirkung mit Uran. So kann in Gegenwart von umweltrelevanten Urankonzentrationen eine Remobilisierung von zuvor passiv gebundenem Uran durch die stoffwechselaktiven Algen erfolgen. Die in Abhängigkeit von der Stoffwechselaktivität, der Urankonzentration und dem pH-Wert mit den Algenzellen gebildeten Uran(VI)-Komplexe wurden strukturell mit Hilfe der spektroskopischen Methoden TRLF-, EXAFS- und ATR-FTIR-Spektroskopie charakterisiert. Mittels TEM konnte Uran in Form von 30-70 nm großen nadelförmigen Ablagerungen in der Zellwand der lebende Algenzellen nachgewiesen werden. Die in dieser Arbeit erhaltenen Ergebnisse leisten einen wichtigen Beitrag zur Vorhersage des Migrationsverhaltens von Uran unter umweltrelevanten Bedingungen und der radiologischen Risikobewertung von geogen und anthropogen auftretendem Uran.
6

Actinide Interaction with Zr-bearing Phases: Spectroscopic Investigations of An3+ Sorption and Incorporation Reactions with Zirconia

Eibl, Manuel 12 January 2021 (has links)
Actinides, especially plutonium (Pu) and americium (Am), are of large concern for the disposal of spent nuclear fuel (SNF). The rather long half-lives of the isotopes Pu-239, Am-241 and Am-243, are causing them to govern the radiotoxicity of SNF from about 500 to 1 million years after removal from the reactor core. Therefore, the safety of a final high-level radioactive waste (HLW) repository largely depends on the mobility of these actinide isotopes. In a worst-case scenario, where water enters a HLW repository, the dissolution of the SNF matrix may lead to the mobilization of actinides. In sub-surface environments under reducing conditions, these actinides can be expected to exist in their tetravalent or trivalent oxidation states, of which the latter one is more soluble and, thus, more mobile. Therefore, the trivalent oxidation state can be considered especially important. Following a release of these trivalent actinides, the multi-barrier concept of a final repository is designed to hinder their spreading into the environment through immobilization reactions such as adsorption to a surface or incorporation via secondary phase formation. One of the first possible interaction partners for actinides is the corrosion layer on the cladding material surrounding the fuel rods, consisting of zirconia (ZrO2). ZrO2 is capable to act as adsorber material for actinides as well as of incorporating large quantities of actinides. Furthermore, zirconia is a promising solid phase for the immobilization of certain waste streams from SNF reprocessing. Therefore, the possible interaction mechanisms between trivalent actinides and zirconia were studied in this thesis. In this work, various methods have been combined to gain comprehensive understanding of the macro scale as well as the molecular interactions taking place in the presence of zirconia. Information of macro scale phenomena in sorption and incorporation studies was obtained in batch-sorption experiments and with powder X-ray diffraction (PXRD), respectively. Luminescence spectroscopy (TRLFS, from time-resolved laser-induced fluorescence spectroscopy) was used in sorption and incorporation investigations to study molecular level interactions of trivalent elements on the surface or in the bulk of ZrO2. The incorporation studies were complemented with extended X-ray absorption fine-structure (EXAFS) spectroscopy. Most experiments were performed using Eu3+ (batch-sorption, TRLFS), or Y3+ (EXAFS) as actinide analogues. Spectroscopic sorption studies and complementary incorporation experiments were performed using the actinide Cm3+ (TRLFS). To study zirconia solid solutions, co-precipitation synthesis of M3+ doped hydrous zirconia, followed by calcination of the resulting phase was performed. A low-temperature hydrothermal synthesis procedure, adapted with the intent to simulate conditions potentially present in a HLW repository, was applied to selected Eu3+ doped ZrO2 compositions. The aim of these studies was to investigate how solid solution formation occurs under such hydrothermal conditions and to compare the incorporation behavior with that of the calcination method. Batch-sorption experiments revealed a favorable pH-dependent behavior for the retention of trivalent actinides in a HLW repository, as complete sorption of Eu3+ was achieved at a pH < 6 for low trivalent metal ion concentrations. The formation of three pH-dependent inner-sphere sorption complexes could be derived with TRLFS. Here, the spectroscopic signature of the third sorption complex differs from the other two. A very strong redshift of the Cm3+ emission peak (612.5 nm) and a long luminescence lifetime (190 ± 40 μs) allows for speculation, whether differing complexing anions, such as carbonates, could play a role or whether differing interaction processes, such as a surface layer incorporation could take place. The incorporation of trivalent cations into zirconia leads to a phase transformation from monoclinic (m) ZrO2, stable without any dopant to the stabilized tetragonal (t) and cubic (c) ZrO2 phases. At doping fractions high enough to stabilize the tetragonal or cubic phase, TRLFS revealed the presence of three differing dopant sites. The introduction of the aliovalent Eu3+ cation into the Zr4+ crystal structure results in the formation of oxygen vacancies to preserve charge neutrality in the crystal structure. Two of these dopant environments could be assigned to structurally incorporated Eu3+ with differing coordination numbers of 8 and 7, i.e. sites with zero or one oxygen vacancy in the first coordination sphere, respectively. The third Eu3+ species could be assigned to incorporation into surface or near-surface layers of zirconia. EXAFS revealed a constant environment of the host (Zr4+) and the dopant (Y3+) within the low doping range as well as within the stabilized zirconia phases. Therefore, the differing sites observed via TRLFS could not be observed here. Incorporation into t- or c-ZrO2 has shown a non-distinguishable spectroscopic behavior meaning that the dopant’s environment in t-ZrO2 and c-ZrO2 is very similar. TRLFS shows a low site symmetry of the dopant in both cases, despite of the high bulk symmetry, i.e. tetragonal or cubic. In the non-stabilized monoclinic crystal structure, Eu3+ incorporation was found to be accompanied by the formation of a secondary phase. The secondary phase is assumed to be nano clusters of the dopant’s oxide, forming inside the zirconia matrix. The hydrothermal synthesis of Eu3+ doped ZrO2 revealed a different phase composition as a function of dopant concentration than observed with the calcination method. At low dopant concentrations where the m-ZrO2 prevails after high-temperature treatment, t- and c-ZrO2 are very abundant after hydrothermal treatment. This is a result of the small crystallite size resulting from the low synthesis temperature and short synthesis time, which causes the stabilization of the tetragonal phase even without any dopant present. At higher doping fractions, phase compositions comparable to the calcination synthesis are obtained. Both, the sorption as well as the incorporation behavior of zirconia studied here show properties advantageous for the retention of trivalent actinides within the environment of a HLW repository. TRLFS studies of the sorption speciation showed the formation of inner-sphere complexes and, possibly surface layer incorporated species, which are more stable under environmental conditions than interactions based on Coulomb interactions only. The speciation of the Cm3+ sorption on zirconia was studied and thermodynamic data was derived via surface complexation modeling for the first time. The very systematic approach of studying the doping throughout a large range resulted in basic understanding of the dopant behavior in zirconia. The incorporation capabilities of actinides into the lattice was observed to be high for t- and c-ZrO2 while rather limited for m-ZrO2. Therefore, the monoclinic structure seems to be unsuitable for incorporating trivalent dopants. Under conditions potentially present in a HLW repository, i.e. hydrothermal synthesis conditions, the amount of m-ZrO2 was observed to be strongly reduced for low overall dopant concentrations. This could facilitate the incorporation of actinides into zirconia even at low concentration levels and therefore, increase its capabilities to act as a retention barrier in a HLW repository. The conclusions of this thesis are of importance in the field of nuclear waste management as they help closing gaps in the understanding of retention processes of trivalent actinides. The obtained molecular information can be built on with experiments designed to obtain reliable thermodynamic data, used in the safety analysis of a HLW repository. Furthermore, the interaction of zirconia with other actinides can be studied in a targeted manner based on the knowledge obtained in this thesis. In the field of material sciences, the molecular information obtained here is of interest as well, as zirconia is a very versatile material. This is due to its abundance of applications ranging from electrolyte material in solid oxide fuel cells to building materials.
7

Zur Aufnahme und Bindung von U(VI) durch die Grünalge Chlorella vulgaris

Vogel, Manja January 2011 (has links)
Uran kann sowohl durch geogene als auch anthropogene Vorgänge in die Umwelt gelangen. Dazu zählen natürliche Uranerzvorkommen und deren Leaching sowie die Auswaschung von Uran aus den Hinterlassenschaften des ehemaligen Uranerzbergbaus. Die Aufklärung des Verhaltens von Uran in der Geo- und Biosphäre ist für eine Risikoabschätzung des Migrationsverhaltens von Radionukliden in der Umwelt notwendig. Algen sind in der Natur weit verbreitet und die wichtigste Organismengruppe in den aquatischen Lebensräumen. Durch ihre ubiquitäre Verbreitung in der Natur ist ihr Einfluss auf das Migrationsverhalten von Uran in der Umwelt von grundlegendem Interesse z.B. um effektive und wirtschaftliche Remediationsstrategien für Wässer zu entwickeln. Außerdem stehen Algen am Beginn der Nahrungskette und spielen eine wirtschaftlich relevante Rolle als Nahrung beziehungsweise Nahrungsergänzungsmittel. Die Möglichkeit des Transfers von algengebundenem Uran entlang der Nahrungskette könnte eine ernsthafte Gesundheitsgefahr für den Menschen darstellen. Das Ziel dieser Arbeit war die quantitative und strukturelle Charakterisierung der Wechselwirkung zwischen Uran(VI) und der Grünalge Chlorella vulgaris im umweltrelevanten Konzentrations- und pH-Wertbereich unter besonderer Berücksichtigung der Stoffwechselaktivität. Die in dieser Arbeit erzielten Ergebnisse der Sorptionsexperimente zeigen deutlich den maßgeblichen Einfluss des Stoffwechselstatus von Chlorella auf die Wechselwirkung mit Uran. So kann in Gegenwart von umweltrelevanten Urankonzentrationen eine Remobilisierung von zuvor passiv gebundenem Uran durch die stoffwechselaktiven Algen erfolgen. Die in Abhängigkeit von der Stoffwechselaktivität, der Urankonzentration und dem pH-Wert mit den Algenzellen gebildeten Uran(VI)-Komplexe wurden strukturell mit Hilfe der spektroskopischen Methoden TRLF-, EXAFS- und ATR-FTIR-Spektroskopie charakterisiert. Mittels TEM konnte Uran in Form von 30-70 nm großen nadelförmigen Ablagerungen in der Zellwand der lebende Algenzellen nachgewiesen werden. Die in dieser Arbeit erhaltenen Ergebnisse leisten einen wichtigen Beitrag zur Vorhersage des Migrationsverhaltens von Uran unter umweltrelevanten Bedingungen und der radiologischen Risikobewertung von geogen und anthropogen auftretendem Uran.
8

Zur Aufnahme und Bindung von Uran(VI) durch die Grünalge Chlorella vulgaris

Vogel, Manja 22 July 2011 (has links) (PDF)
Uran kann sowohl durch geogene als auch anthropogene Vorgänge in die Umwelt gelangen. Dazu zählen natürliche Uranerzvorkommen und deren Leaching sowie die Auswaschung von Uran aus den Hinterlassenschaften des ehemaligen Uranerzbergbaus. Die Aufklärung des Verhaltens von Uran in der Geo- und Biosphäre ist für eine Risikoabschätzung des Migrationsverhaltens von Radionukliden in der Umwelt notwendig. Algen sind in der Natur weit verbreitet und die wichtigste Organismengruppe in den aquatischen Lebensräumen. Durch ihre ubiquitäre Verbreitung in der Natur ist ihr Einfluss auf das Migrationsverhalten von Uran in der Umwelt von grundlegendem Interesse z.B. um effektive und wirtschaftliche Remediationsstrategien für Wässer zu entwickeln. Außerdem stehen Algen am Beginn der Nahrungskette und spielen eine wirtschaftlich relevante Rolle als Nahrung beziehungsweise Nahrungsergänzungsmittel. Die Möglichkeit des Transfers von algengebundenem Uran entlang der Nahrungskette könnte eine ernsthafte Gesundheitsgefahr für den Menschen darstellen. Das Ziel dieser Arbeit war die quantitative und strukturelle Charakterisierung der Wechselwirkung zwischen Uran(VI) und der Grünalge Chlorella vulgaris im umweltrelevanten Konzentrations- und pH-Wertbereich unter besonderer Berücksichtigung der Stoffwechselaktivität. Die in dieser Arbeit erzielten Ergebnisse der Sorptionsexperimente zeigen deutlich den maßgeblichen Einfluss des Stoffwechselstatus von Chlorella auf die Wechselwirkung mit Uran. So kann in Gegenwart von umweltrelevanten Urankonzentrationen eine Remobilisierung von zuvor passiv gebundenem Uran durch die stoffwechselaktiven Algen erfolgen. Die in Abhängigkeit von der Stoffwechselaktivität, der Urankonzentration und dem pH-Wert mit den Algenzellen gebildeten Uran(VI)-Komplexe wurden strukturell mit Hilfe der spektroskopischen Methoden TRLF-, EXAFS- und ATR-FTIR-Spektroskopie charakterisiert. Mittels TEM konnte Uran in Form von 30-70 nm großen nadelförmigen Ablagerungen in der Zellwand der lebende Algenzellen nachgewiesen werden. Die in dieser Arbeit erhaltenen Ergebnisse leisten einen wichtigen Beitrag zur Vorhersage des Migrationsverhaltens von Uran unter umweltrelevanten Bedingungen und der radiologischen Risikobewertung von geogen und anthropogen auftretendem Uran. / Uranium could be released into the environment from geogenic deposits and from former mining and milling areas by weathering and anthropogenic activities. The elucidation of uranium behavior in geo- and biosphere is necessary for a reliable risk assessment of radionuclide migration in the environment. Algae are widespread in nature and the most important group of organisms in the aquatic habitat. Because of their ubiquitous occurrence in nature the influence of algae on the migration process of uranium in the environment is of fundamental interest e.g. for the development of effective and economical remediation strategies for contaminated waters. Besides, algae are standing at the beginning of the food chain and play an economically relevant role as food and food additive. Therefore the transfer of algae-bound uranium along the food chain could arise to a serious threat to human health. Aim of this work was the quantitative and structural characterization of the interaction between U(VI) and the green alga Chlorella vulgaris in environmental relevant concentration and pH range with special emphasis on metabolic activity. The obtained findings of the sorption experiments in this study demonstrate clearly, the interactions with uranium are heavily influenced by the status of the investigated Chlorella cells. So in presence of environmentally relevant uranium concentrations a remobilization of algal-bound uranium by metabolically active algae occurred. The U(VI)-algae-complexes formed in dependence of cell activity, uranium concentration and pH value were structural characterized by TRLF, EXAFS and ATR-FTIR spectroscopy. With the help of TEM under the given experimental conditions uranium was detected in form of 30-70 nm needle-like deposites in the cell wall of living algae. The obtained results of this study contribute to the prediction of the migration behavior of uranium under environmental conditions, the radiological risk assessment of geogenic and anthropogenic appearing uranium and a reliable estimation of the accumulation of uranium in the food chain.
9

Wechselwirkung halophiler Mikroorganismen mit Radionukliden

Bader, Miriam 08 May 2018 (has links)
Im Rahmen dieser Arbeit wurde die Wechselwirkung von halophilen Mikroorganismen mit Uran unter Verwendung verschiedener spektroskopischer, mikroskopischer und molekularbiologischer Methoden untersucht. Ausgewählte Vertreter halophiler Mikroorganismen waren dabei das moderat halophile Bakterium Brachybacterium sp. G1 sowie zwei extrem halophile Archaea der Gattung Halobacterium. Für das extrem halophile Archaeon H. noricense DSM15987T wurde auch die Wechselwirkung mit den trivalenten Metallionen Europium und Curium untersucht. Es konnte festgestellt werden, dass die Bioassoziation von Uran durch das untersuchte Bakterium und die beiden Archaea in unterschiedlicher Art und Weise erfolgte. Für den niedrigeren Urankonzentrationsbereich (30 - 50 μM) konnte für das moderat halophile Bakterium der Prozess der Biosorption nachgewiesen werden, welcher nach 2 h abgeschlossen war. Mittels in situ ATR FT-IR war ausschließlich die Anbindung von Uran an Carboxylgruppen detektierbar. Die Assoziation desselben Radionuklids an die Zellen der beiden extrem halophilen Archaea erfolgte im Gegensatz dazu in einem mehrstufigen Prozess. Dieser ist bisher in der Literatur nach bestem Wissen nur einmal für ein Bakterium beschrieben. Der mehrstufige Prozess ist gekennzeichnet durch eine erste kurze Assoziationsphase von einer Stunde, gefolgt von einer Freisetzung des Urans in die umgebende Lösung. Nach dieser vierstündigen Desorptionsphase setzte ein erneuter Assoziationsprozess ein. Bei höheren Urankonzentrationen (85 - 100 μM) wurde mit zunehmender Kontaktzeit mehr Uran assoziiert, ohne dass Desorptionsprozesse erkennbar waren. Um den mehrstufigen und konzentrationsabhängigen Assoziationsprozess von Uran an H. noricense DSM15987T auf molekularer Ebene aufzuklären, wurden Fluoreszenzmikroskopie, Elektronenmikroskopie gekoppelt mit EDX – Analyse sowie in situ ATR FT-IR, TRLFS und XAS komplementär eingesetzt und diese mikroskopischen und spektroskopischen Methoden durch die molekularbiologische Methode der Proteomik ergänzt. Mikroskopisch konnte eine Agglomeration der Zellen detektiert werden. Diese war mit zunehmender Inkubationszeit sowie bei höherer Urankonzentration stärker ausgeprägt. Mit den spektroskopischen Methoden konnte die Anbindung von Uran an carboxylische Funktionalitäten nachgewiesen werden. Zusätzlich war eine Phosphatspezies, strukturell analog dem U(VI) Mineral Meta-Autunit, nachweisbar. Die Fraktionsanalyse zeigt, dass bei niedriger Urankonzentration diese Phosphatspezies dominant ist. Demgegenüber überwiegt bei einer höheren Urankonzentration die carboxylische Spezies. Dies kann mit der verstärkten Agglomeration und der damit einhergehenden Freisetzung von EPS, wozu auch carboxylische Funktionalitäten in Form von verschiedenen Zuckerderivaten gehören, erklärt werden. Eine Bestätigung der Bildung eines Uran-Phosphat-Minerals erfolgte mit TEM/EDX. Die erhaltenen spektroskopischen und mikroskopischen Nachweise des Uran-Phosphat-Minerals konnten auch erstmalig mit molekularbiologischen Ergebnissen in Übereinstimmung gebracht werden. Dabei war mit Hilfe der Proteomik eine Uran-induzierte Änderung der Expression von Enzymen des Phosphatmetabolismus nachweisbar. Zusätzlich wurde die Interaktion von H. noricense DSM15987T mit trivalenten Metallen untersucht. Dabei kam das radioaktive Element Curium und sein analoges Lanthanid Europium zum Einsatz. Es konnte festgestellt werden, dass es sich bei der Assoziation von Europium, anders als beim Uran, nicht um einen mehrstufigen Prozess handelt. Jedoch ist auch hier nicht von einer reinen Biosorption auszugehen, da die Assoziation relativ langsam erfolgt. Mit TRLFS konnten drei zellassoziierte Spezies extrahiert werden. Durch den Vergleich mit Referenzspektren fand eine Zuordnung zu einer phosphatischen und einer carboxylischen Spezies statt. Bei der Assoziation von Curium an das halophile Archaeon konnten zwei Spezies identifiziert werden, welche allerdings auf Grund der geringen Anzahl an vorhandenen Referenzspektren nicht eindeutig zugeordnet werden konnte. Mit der vorliegenden Arbeit konnte gezeigt werden, dass die bisher in der Literatur noch nicht beschriebene Kombination von spektroskopischen, mikroskopischen und molekularbiologischen Methoden zur Aufklärung der Uraninteraktion mit Mikroorganismen notwendig ist. So können stattfindende Prozesse zusätzlich durch eine veränderte Proteinexpression erklärt werden. Zusammenfassend ist zu sagen, dass die Art und Weise der Wechselwirkung eines Radionuklids mit einem Mikroorganismus stark vom jeweiligen Mikroorganismus abhängt. Daher ist es zukünftig wichtig die unter Endlagerbedingungen aktiven dominanten Vertreter zu identifizieren, um daraus resultierend die bedeutenden Stoffwechselwege abzuleiten und letztendlich thermodynamische Daten für die Sicherheitsanalyse zu generieren. Das in dieser Arbeit untersuchte Bakterium wird aufgrund seiner geringen Salztoleranz, trotz seiner starken Biosorption des Urans, eher eine untergeordnete Rolle für das Migrationsverhalten der Radionuklide im Salzgestein spielen. Demgegenüber sind Halobacterium Spezies auf Grund ihrer hohen Salztoleranz und ihres ubiquitären Vorkommens in weltweiten Salzvorkommen ein dominanter Mikroorganismus in Steinsalz. Die untersuchten extrem halophilen Archaea tragen dabei zu einer Immobilisierung des Urans (z. Bsp. durch Biomineralisierung und Bioreduktion) und somit zur Rückhaltung von im Salzgestein freigesetzten Radionukliden bei. Inwiefern diese Transformationsprozesse auch für andere sechswertige Actinide wie PuO22+ und NpO22+ zutreffen, muss in weiteren Experimenten geklärt werden.
10

The Mobilization of Actinides by Microbial Ligands Taking into Consideration the Final Storage of Nuclear Waste - Interactions of Selected Actinides U(VI), Cm(III), and Np(V) with Pyoverdins Secreted by Pseudomonas fluorescens and Related Model Compounds (Final Report BMBF Project No.: 02E9985)

Glorius, M., Moll, H., Bernhard, G., Roßberg, A., Barkleit, A. January 2009 (has links)
The groundwater bacterium Pseudomonas fluorescens (CCUG 32456) isolated at a depth of 70 m in the Äspö Hard Rock Laboratory secretes a pyoverdin-mixture with four main components (two pyoverdins and two ferribactins). The dominant influence of the pyoverdins of this mixture could be demonstrated by an absorption spectroscopy study. The comparison of the stability constants of U(VI), Cm(III), and Np(V) species with ligands simulating the functional groups of the pyoverdins results in the following order of complex strength: pyoverdins (PYO) > trihydroxamate (DFO) > catecholates (NAP, 6­HQ) > simple hydroxamates (SHA, BHA). The pyoverdin chromophore functionality shows a large affinity to bind actinides. As a result, pyoverdins are also able to complex and to mobilize elements other than Fe(III) at a considerably high efficiency. It is known that EDTA may form the strongest actinide complexes among the various organic components in nuclear wastes. The stability constants of 1:1 species formed between Cm(III) and U(VI) and pyoverdins are by a factor of 1.05 and 1.3, respectively, larger compared to the corresponding EDTA stability constants. The Np(V)-PYO stability constant is even by a factor of 1.83 greater than the EDTA stability constant. The identified Np(V)-PYO species belong to the strongest Np(V) species with organic material reported so far. All identified species influence the actinide speciation within the biologically relevant pH range. The metal binding properties of microbes are mainly determined by functional groups of their cell wall (LPS: Gram-negative bacteria and PG: Gram-positive bacteria). On the basis of the determined stability constants raw estimates are possible, if actinides prefer to interact with the microbial cell wall components or with the secreted pyoverdin bioligands. By taking pH 5 as an example, U(VI)-PYO interactions are slightly stronger than those observed with LPS and PG. For Cm(III) we found a much stronger affinity to aqueous pyoverdin species than to functional groups of the cell wall compartments. A similar behavior was observed for Np(V). This shows the importance of indirect interaction processes between actinides and bioligands secreted by resident microbes.

Page generated in 0.4461 seconds