• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 329
  • 66
  • 44
  • 33
  • 18
  • 14
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 670
  • 95
  • 74
  • 71
  • 70
  • 63
  • 63
  • 56
  • 55
  • 55
  • 53
  • 47
  • 44
  • 44
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Magnetron sputtering of transparent conducting tungsten doped indium oxide

Evertsson, Erica January 2022 (has links)
In thin film solar cells there is a front contact layer called TCO, transparent conducting oxide. This layer requires high conductivity and high transmittance. Different materials such as Tin doped indium oxide (ITO) and Aluminum doped zinc oxide (AZO) are current good alternatives but several other materials are investigated to find even better materials. One of them is tungsten doped indium oxide (IOW). This project was about investigating the deposition process for IOW and characterize the properties of IOW thin film to investigate the possibilities for implementing this material as a contact layer in thin film solar cells. The results from the two batches of depositions varied a lot. Some samples came out dark, but some were transparent and had a high transmittance, suitable for a TCO. The highest transmittance reached through this process was around 95 % in the infrared (IR) range and around 90 % in the visible range. When it comes to the resistivity, no IOW-samples reaches desired levels for a TCO. The lowest resistivity reached was 6.36 * 10-4 W cm. The results showed that the sample with the lowest resistivity was the undoped material, which is contradicting the current theory on the subject. The lowest resistivity for the IOW film was 6.50 * 10-3 W cm.
432

Development and Characterization of Low Cost Tungsten Disulfide Ink for Ink-jet Printing

Mayersky, Joshua 21 September 2018 (has links)
No description available.
433

Design, Simulation and Physical Characterization of 3D Photonic Crystal Woodpile Structures for High Efficacy Incandescent Thermal Emission

SRIDHAR, SUPRIYA LALAPET 22 September 2008 (has links)
No description available.
434

Study of the Pulsed Electrochemical Micromachining of Ultra High Aspect Ratio Micro Tools

Mathew, Ronnie A., M.S. 20 April 2011 (has links)
No description available.
435

MODELING AND TESTING OF THE INTERFACIAL STRESS STATE OF A 316L STAINLESS STEEL CLAD TUNGSTEN COMPOSITE USING PUSH-OUT TESTING

RUTHERFORD, ROBERT WESLEY 11 October 2001 (has links)
No description available.
436

Full and half sandwich compounds of dimolybdenum and ditungsten

Hollandsworth, Carl B. 12 October 2004 (has links)
No description available.
437

The Effects of Tool Texture on Tool Wear in Friction Stir Welding of X-70 Steel

Michael, Eff 31 August 2012 (has links)
No description available.
438

The Effects of Tool Texture on Tool Wear in Friction Stir Welding of X-70 Steel

Eff, Michael 20 June 2012 (has links)
No description available.
439

Characterization of tungsten-silicide for gate level interconnections of MOS VLSI circuts /

Sabi, Babak January 1984 (has links)
No description available.
440

Effect of tungsten on nitrate and nitrite reductases in Azospirillum brasilense SP 7

Chauret, Christian January 1990 (has links)
No description available.

Page generated in 0.0375 seconds