• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extrinsic Doping of Few Layered Tungsten Disulfide Films by Pulsed Laser Deposition

Rathod, Urmilaben Pradipsinh P 08 1900 (has links)
This dissertation tested the hypothesis that pulsed laser deposition (PLD) could be used to create targeted dopant profiles in few layered WS2 films based on congruent evaporation of the target. At the growth temperatures used, 3D Volmer-Weber growth was observed. Increased energy transfer from the PLD plume to the growing films degraded stoichiometry (desorption of sulfur) and mobility. Sulfur vacancies act as donors and produce intrinsic n-type conductivity. Post deposition annealing significantly improved the crystallinity, which was accompanied by a mobility increase from 6.5 to 19.5 cm2/Vs. Preparation conditions that resulted in excess sulfur, possibly in the form of interstitials, resulted in p-type conductivity. Current-voltage studies indicated that Ohmic contacts were governed by surface properties and tunneling. Extrinsic p-type doping of few layered WS2 films with Nb via pulsed laser deposition using ablation targets fabricated from WS2, S and Nb powders is demonstrated. The undoped controls were n-type, and exhibited a Hall mobility of 0.4 cm2/Vs. Films doped at 0.5 and 1.1 atomic percentages niobium were p-type, and characterized by Fermi levels at 0.31 eV and 0.18 eV from the valence band edge. That is, the Fermi level moved closer to the valence band edge with increased doping. With increased Nb doping, the hole concentrations increased from 3.9 x1012 to 8.6 x1013 cm-2, while the mobility decreased from 7.2 to 2.6 cm2/Vs, presumably due to increased ionized impurity scattering. X-ray photoelectron spectroscopy indicates that Nb substitutes on W lattice sites, and the measured peak shifts toward lower binding energy observed corresponded well with the UPS data. Throughout, a clear correlation between degraded stoichiometry and decreased mobility was observed, which indicates that point defect and ionized impurity scattering is a dominant influence on carrier transport in PLD few-layered WS2 films. The approach demonstrates the potential of PLD for targeted doping of transition metal dichalcogenides.
2

Triboactive Component Coatings : Tribological Testing and Microanalysis of Low-Friction Tribofilms

Gustavsson, Fredrik January 2013 (has links)
Coatings are often used on critical components in machines and engines to reduce wear and to provide low friction in order to reduce energy losses and the environmental impact. A triboactive coating not only provides this desired performance, it also actively maintains the low friction by a structural or chemical change in a very thin top layer of these already micrometer thin coatings. This so-called tribofilm is often 5-50 nm thick and can be formed either from the coating itself or by a reaction with the counter surface or the surrounding atmosphere, i.e. gas, fuel, oil, etc. The tribofilm will maintain the wanted performance for as long as the system is not chemically disturbed. This thesis provides a detailed overview of the functionality of triboactive low-friction coatings, in many different systems. The majority of the tribofilms discussed, formed in very different environments, are built up by tungsten disulfide (WS2), which is a material similar to graphite, with a lamellar structure where strongly bonded atomic planes may slip over each other almost without resistance. The major difference is that WS2 is an intrinsically triboactive material, while graphite is not. However, graphite and other carbon-based materials can be made triboactive in certain atmospheres or by addition of other elements, such as hydrogen. The remarkable affinity and driving force to form such WS2 low-friction tribofilms, regardless of the initial states of the sulfur and tungsten, and even when the forming elements are present only at ppm levels, is a recurrent observation in the thesis. Addition of an alloying element to sputtered coatings of WS2 can improve its mechanical and frictional properties significantly. Several promising attempts have been made to find good candidates, out of which a few important ones are investigated in this thesis. Their achievable potential in friction reductions is demonstrated. By reducing friction, energy losses can be avoided, which also results in lower particle and exhaust emissions, which directly reduces the environmental impact. Triboactive coatings are shown to be a promising route to significantly improve tribological applications and allow more environmental friendly and energy efficient vehicles.
3

Combined Tungsten Disulfide and Graphene Low Friction Thin Film : Synthesis and Characterization

Johansson, Fredrik January 2015 (has links)
Tungsten disulfide is a proven material as a low friction solid coating. The material is well characterized and has proven its capabilities the last century. Graphene is this centurys most promising material with electrical and mechanical properties. With it the 2D material revolution have started. In this thesis I present a feasible way to sputter tungsten disulfide on graphene as a substrate with little damage to the graphene from energetic particles and a straight forward method to quantize the damage before and after deposition. Further I investigate compositional changes in the sputtered films depending on processing pressure and how tungsten disulfide film thickness and the amount of graphene damage affects the materials low friction capabilities. It is shown that graphene is not a viable substrate for a low friction tungsten disulfide film and that tungsten disulfide is an excellent material for low friction coatings even down too a few nanometers and that the films behavior during load in the friction testing significantly depends on the processing pressure during sputtering.
4

A Comparison Between Graphene and WS2 as Solid Lubricant Additives to Aluminum for Automobile Applications

Rengifo, Sara 01 January 2015 (has links)
The purpose of this thesis was to compare graphene nanoplatelets (GNP) and WS2 as solid lubricant additives to aluminum in order to reduce friction and wear. The central hypothesis of this work relied on lubricating properties of 2D materials, which consist layers that slip under a shear force. Two aluminum composites were made (Al-2 vol.% GNP and Al-2 vol.% WS2) by spark plasma sintering. Tribological properties were evaluated by ball-on-disk wear tests at room temperature (RT) and 200°C. WS2 not only presented the lowest COF (0.66) but also improved the wear resistance of aluminum by 54% at RT. Al-2 vol.% GNP composite displayed poor densification (91%) and low hardness resulting in poor wear resistance. The wear rate of Al-2 vol.% GNP composite increased by 233% at RT and 48% at 200°C as compared to pure aluminum. GNP addition also resulted in lower COF (0.79) as compared to pure aluminum (0.87).
5

Exploration of the Cold-Wall CVD Synthesis of Monolayer MoS2 and WS2

January 2019 (has links)
abstract: A highly uniform and repeatable method for synthesizing the single-layer transition metal dichalcogenides (TMDs) molybdenum disulfide, MoS2, and tungsten disulfide, WS2, was developed. This method employed chemical vapor deposition (CVD) of precursors in a custom built cold-wall reaction chamber designed to allow independent control over the growth parameters. Iterations of this reaction chamber were employed to overcome limitations to the growth method. First, molybdenum trioxide, MoO3, and S were co-evaporated from alumina coated W baskets to grow MoS2 on SiO2/Si substrates. Using this method, films were found to have repeatable coverage, but unrepeatable morphology. Second, the reaction chamber was modified to include a pair of custom bubbler delivery systems to transport diethyl sulfide (DES) and molybdenum hexacarbonyl (MHC) to the substrate as a S and Mo precursors. Third, tungsten hexacarbonyl (WHC) replaced MHC as a transition metal precursor for the synthesis of WS2 on Al2O3, substrates. This method proved repeatable in both coverage and morphology allowing the investigation of the effect of varying the flow of Ar, varying the substrate temperature and varying the flux of DES to the sample. Increasing each of these parameters was found to decrease the nucleation density on the sample and, with the exception of the Ar flow, induce multi-layer feature growth. This combination of precursors was also used to investigate the reported improvement in feature morphology when NaCl is placed upstream of the substrate. This was found to have no effect on experiments in the configurations used. A final effort was made to adequately increase the feature size by switching from DES to hydrogen sulfide, H2S, as a source of S. Using H2S and WHC to grow WS2 films on Al2O3, it was found that increasing the substrate temperature and increasing the H2S flow both decrease nucleation density. Increasing the H2S flow induced bi-layer growth. Ripening of synthesized WS2 crystals was demonstrated to occur when the sample was annealed, post-growth, in an Ar, H2, and H2S flow. Finally, it was verified that the final H2S and WHC growth method yielded repeatability and uniformity matching, or improving upon, the other methods and precursors investigated. / Dissertation/Thesis / Doctoral Dissertation Physics 2019
6

Development and Characterization of Low Cost Tungsten Disulfide Ink for Ink-jet Printing

Mayersky, Joshua 21 September 2018 (has links)
No description available.
7

Intégration de matériaux nanostructurés dans la conception et la réalisation de biocapteurs sans marquage pour la détection de cibles d'intérêt / ntegration of nanostructured materials into the design and realization of biosensors without marking for the detection of targets of interests

Palomar, Quentin 06 December 2017 (has links)
Le but principal de ces travaux de thèse fut la conception et la réalisation de biocapteurs par utilisation de méthodes de transduction sans marquage, comme la spectroscopie d’impédance électrochimique (EIS), pour la détection de cible d’intérêts. Pour cela, différentes architectures moléculaires, spécifiques à la molécule d’intérêt ciblée, ont été développées afin de permettre la transduction du signal issu de la reconnaissance entre le biorécepteur et son substrat, et conduire ainsi à la détection de la cible.Les systèmes mis au point reposent sur l’intégration de nanomatériaux, tels que les nanotubes de carbones ou le disulfure de tungstène, pour assurer l'immobilisation de l'entité biospécifique à la surface du capteur. L’intérêt de ces matériaux est multiple puisqu’ils permettent une très forte augmentation de la surface spécifique du système et sont également mis à contribution lors de la fonctionnalisation de la surface de l’électrode. Un des grands défis rencontré dans le développement des biocapteurs étant la stratégie d'immobilisation de l'entité biospécifique sur la surface du capteur.Ces travaux se sont donc dans un premier temps intéressés à la réalisation et à la caractérisation de films minces de ces nanomatériaux ainsi qu’à leur transfert à la surface d’une électrode. Dans ce contexte, le but est de concevoir des bioarchitectures poreuses à base de polymères fonctionnels électrogénérés autour des nanostructures de carbone permettant la pénétration de grandes biomolécules comme des anticorps pour développer des immunocapteurs de haute performance.La seconde partie de ce travail s’est donc orientée vers la conception de biocapteurs par utilisation de ces différents matériaux. La fiabilité du procédé de la construction de ces nanostructures poreuses a été validée par la conception de systèmes immunologiques pour la détection de l’anticorps de l’antitoxine du choléra et l’anticorps de la toxine de la dengue.Enfin, un dernier biocapteur enzymatique, s’appuyant sur l’utilisation de nano-bâtonnets de disulfure de tungstène, a été développé. Ce dernier permet la détection de deux molécules d’intérêts, à savoir le catéchol et la dopamine, par utilisation de la polyphénol oxydase. / The main purpose of this work was the design and the development of biosensors by using non-marking transduction methods, such as electrochemical impedance spectroscopy (EIS), for the detection of targets of interests. To this end, various molecular architectures have been developed to allow the transduction of the signal resulting from the recognition between the bioreceptor and its substrate, and thus lead to the detection of the target.The systems developed are based on the integration of nanomaterials, such as carbon nanotubes or tungsten disulfide, to ensure the immobilization of the biospecific entity at the surface of the sensor. The advantages of these materials are multiples, since they allow a very large increase in the specific surface area and are also used in the functionalization of the surface of the electrode. Indeed, one of the major challenges encountered in the development of biosensors is the strategy involved in the immobilization of the biospecific entity on the surface of the sensor.This work was initially interested in the realization and characterization of thin films of these nanomaterials as well as their transfer to the surface of an electrode. In this context, the aim is to design porous bioarchitectures based on electrogenerated functional polymers around carbon nanostructures allowing the penetration of large biomolecules such as antibodies to develop high-performance immunosensors.The second part of the work was oriented towards the design of biosensors using these different materials. The reliability of the process has been validated by the design of immunological systems for the detection of the anti-cholera toxin antibody and dengue toxin antibody.Finally, a last enzymatic biosensor, based on the use of tungsten disulfide nano-sticks, has been developed. The latter allows the detection of two molecules of interest, catechol and dopamin, by the use of polyphenol oxidase.
8

Triboactive Low-Friction Coatings Based on Sulfides and Carbides

Sundberg, Jill January 2014 (has links)
For sustainable development, it is highly important to limit the loss of energy and materials in machines used for transportation, manufacturing, and other purposes. Large improvements can be achieved by reducing friction and wear in machine elements, for example by the application of coatings. This work is focused on triboactive coatings, for which the outermost layer changes in tribological contacts to form so-called tribofilms. The coatings are deposited by magnetron sputtering (a physical vapor deposition method) and thoroughly chemically and structurally characterized, often theoretically modelled, and tribologically evaluated, to study the connection between the composition, structure and tribological performance of the coatings. Tungsten disulfide, WS2, is a layered material with the possibility of ultra-low friction. This work presents a number of nanocomposite or amorphous coatings based on WS2, which combine the low friction with improved mechanical properties. Addition of N can give amorphous coatings consisting of a network of W, S and N with N2 molecules in nanometer-sized pockets, or lead to the formation of a metastable cubic tungsten nitride. Co-deposition with C can also give amorphous coatings, or nanocomposites with WSx grains in an amorphous C-based matrix. Further increase in coating hardness is achieved by adding both C and Ti, forming titanium carbide. All the WS2-based materials can provide very low friction (down to µ<0.02) by the formation of WS2 tribofilms, but the performance is dependent on the atmosphere as O2 and H2O can be detrimental to the tribofilm functionality. Another possibility is to form low-friction tribofilms by tribochemical reactions between the two surfaces in contact. Addition of S to TiC/a-C nanocomposite coatings leads to the formation of a metastable S-doped carbide phase, TiCxSy, from which S can be released. This enables the formation of low-friction WS2 tribofilms when a Ti-C-S coating is run against a W counter-surface. Reduced friction, at a moderate level, also occurs for steel counter-surfaces, likely due to formation of beneficial iron sulfide tribofilms. The studied coatings, whether based on WS2 or TiC, are thus triboactive, with the ability to form low-friction tribofilms in a sliding contact.
9

Pokročilé plazmonické materiály pro metapovrchy a fotochemii / Advanced plasmonic materials for metasurfaces and photochemistry

Ligmajer, Filip January 2018 (has links)
Plazmonika, tedy vědní obor zabývající se interakcí světla s kovovými materiály, nabízí ve spojení s nanotechnologiemi nezvyklé možnosti, jak světlo ovládat a využívat. Výsledkem tohoto spojení může být například zaostřování světla pod difrakční limit, zesilování emise nebo absorbce kvantových zářičů, či extrémně citlivá detekce molekul. Tato práce se zabývá zejména možnostmi využití plazmoniky pro vývoj plošných optických prvků, tzv. metapovrchů, a pro fotokatalytické aplikace založené na plazmonicky generovaných elektronech s vysokou energií, tzv. horkých elektronech. Nejprve jsou vysvětleny teoretické základy plazmoniky a je poskytnut přehled jejích nejvýznamnějších aplikací. Poté jsou představeny tři studie zabývající se využitím plazmonických nanostruktur pro ovládání fáze a polarizace světla, pro vytváření dynamicky laditelných metapovrchů, a pro foto-elektrochemii s horkými elektrony. Společným prvkem těchto studií je pak používání pokročilých, resp. v rámci těchto oblastí netradičních, materiálů, jako např. oxidu vanadičitého nebo dichalkogenidů přechodných kovů.
10

Physical Vapor Deposition of Materials for Flexible Two Dimensional Electronic Devices

Hagerty, Phillip 17 May 2016 (has links)
No description available.

Page generated in 0.0894 seconds