• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 21
  • 16
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 221
  • 81
  • 49
  • 49
  • 48
  • 44
  • 42
  • 33
  • 32
  • 30
  • 26
  • 25
  • 25
  • 24
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Quasi 3D Multi-stage Turbomachinery Pre-optimizer

Burdyshaw, Chad Eric 04 August 2001 (has links)
A pre-optimizer has been developed which modifies existing turbomachinery blades to create new geometries with improved selected aerodynamic coefficients calculated using a linear panel method. These blade rows can then be further refined using a Navier-Stokes method for evaluation. This pre-optimizer was developed in hopes of reducing the overall CPU time required for optimization when using only Navier-Stokes evaluations. The primary method chosen to effect this optimization is a parallel evolutionary algorithm. Variations of this method have been analyzed and compared for convergence and degree of improvement. Test cases involved both single and multiple row turbomachinery. For each case, both single and multiple criteria fitness evaluations were used.
82

Development of a Methodology to Estimate Aero-Performance and Aero-Operability Limits of a Multistage Axial Flow Compressor for Use in Preliminary Design

Kulkarni, Sameer January 1900 (has links)
No description available.
83

A General Multidisciplinary Turbomachinery Design Optimization system Applied to a Transonic Fan

Nemnem, Ahmed M. F. January 2014 (has links)
No description available.
84

AMBIENT AND HIGH TEMPERATURE EROSION INVESTIGATION OF MATERIALS AND COATINGS USED IN TURBOMACHINERY

DRENSKY, GEORGE KERILOV 11 June 2002 (has links)
No description available.
85

Investigation of Particle Deposition in Internal Cooling Cavities of a Nozzle Guide Vane

Casaday, Brian Patrick January 2013 (has links)
No description available.
86

Unsteady Turbomachinery Flow Simulation With Unstructured Grids Using ANSYS Fluent

Longo, Joel Joseph January 2013 (has links)
No description available.
87

An Investigation of the Performance of Compliant Finger Seals for use in Gas Turbine Engines using Navier-Stokes and Reynolds Equation Based Numerical Models and Experimental Evaluation

Kline, Sara E. January 2016 (has links)
No description available.
88

Development of the second-generation IMTS (Intelligent Monitoring and Trending System) and WOT (Wizard of Tech) expert system for rotating machinery

Pawtowski, E. C. 02 October 2008 (has links)
IMTS and WOT form a PC-based hardware and software system designed to continuously monitor large numbers of rotating machinery, evaluate each machine's condition through a series of user-definable standards, and alert operators to potential problems. This system requires a rack of data acquisition equipment located near the machines being monitored and a PC that can be located remotely. This system has been tested under actual plant conditions at the Virginia Tech Power Plant. The software operates under Windows 3.1, and allows data to be acquired and evaluated simultaneously. This thesis discusses the development of this system over earlier versions and the installation procedures and first runs at the Power Plant. It discusses in detail the operation of some of the main programs that comprise the Intelligent Trending and Expert System. / Master of Science
89

Aerodynamic and mechanical performance of a high-pressure turbine stage in a transient wind tunnel

Sheard, A. G. January 1989 (has links)
Unsteady three-dimensional flow phenomena have major effects on the aerodynamic performance of, and heat transfer to, gas-turbine blading. Investigation of the mechanisms associated with these phenomena requires an experimental facility that is capable of simulating a gas turbine, but at lower levels of temperature and pressure to allow conventional measurement techniques. This thesis reports on the design, development and commissioning of a new experimental facility that models these unsteady three-dimensional flow phenomena. The new facility, which consists of a 62%-size, high-pressure gas-turbine stage mounted in a transient wind tunnel, simulates the turbine design point of a full-stage turbine. The thesis describes the aerodynamic and mechanical design of the new facility, a rigorous stress analysis of the facility’s rotating system and the three-stage commissioning of the facility. The thesis concludes with an assessment of the turbine stage performance.
90

Investigation on methods to improve heat loadprediction of the SGT-600 gas turbine

Farhanieh, Arman January 2016 (has links)
In modern gas turbines, with the increase of inlet gas temperature to raise thework output, the importance of accurate aero-thermal analysis has become of vitalimportance. These analysis are required for temperature prediction throughoutthe turbine and to predict the thermal stresses and to estimate the cooling requiredfor each component.In the past 20 years, computational fluid dynamics (CFD) methods have becomea powerfool tool aero-thermal analysis. Due to reasons including numericallimitation, flow complications caused by blade row interactions and the effect offilm cooling, using simple steady state CFD methods may result in inaccuratepredictions. Even though employing transient simulations can improve the accuracyof the simulations, it will also greatly increase the simulation time and cost.Therefore, new methods are constantly being developed to increase the accuracywhile keeping the computational costs relatively low. Investigating some of thesedeveloped methods is one of the main purposes of this study.A simplification that has long been applied in gas turbine simulations hasbeen the absence of cooling cavities. Another part of this thesis will focus onthe effect of cooling cavities and the importance of including them in the domain.Therefore, all transient and steady state simulations have been examined for twocases; a simplified case and a detailed case. The results are then compared tothe experimental measurements to evaluate the importance of their presence inthe model. The software used to perform all simulations is the commercial codeANSYS CFX 15.The findings suggest that even though including cooling cavities would improvethe results, the simulations should be run in transient. One important finding wasthat when performing transient simulations, especially the Time Transformationmethod, not only is the pitch ratio between every subsequent blade row important,but also the pitch ratio between the stators is highly influential on the accuracyof the results.

Page generated in 0.0246 seconds