381 |
Some Studies of Statistical Properties of Turbulence in Plasmas and FluidsBanerjee, Debarghya January 2014 (has links) (PDF)
Turbulence is ubiquitous in the flows of fluids and plasmas. This thesis is devoted to studies of the statistical properties of turbulence in the three-dimensional (3D) Hall magnetohydrodynamic (Hall-MHD) equations, the two-dimensional (2D) MHD equations, the one-dimensional (1D) hyperviscous Burgers equation, and the 3D Navier-Stokes equations. Chapter 1 contains a brief introduction to statistically homogeneous and isotropic turbulence. This is followed by an over-view of the equations we study in the subsequent chapters, the motivation for the studies and a summary of problems we investigate in chapters 2-6.
In Chapter 2 we present our study of Hall-MHD turbulence [1]. We show that a shell-model version of the 3D Hall-MHD equations provides a natural theoretical model for investigating the multiscaling behaviors of velocity and magnetic structure functions. We carry out extensive numerical studies of this shell model, obtain the scaling exponents for its structure functions, in both the low-k and high-k power-law ranges of 3D Hall-MHD, and find that the extended-self-similarity procedure is helpful in extracting the multiscaling nature of structure functions in the high-k regime, which otherwise appears to display simple scaling. Our results shed light on intriguing solar-wind measurements.
In Chapter 3 we present our study of the inverse-cascade regime in two-dimensional magnetohydrodynamic turbulence [2]. We present a detailed direct numerical simulation (DNS) of statistically steady, homogeneous, isotropic, two-dimensional magnetohydrodynamic (2D MHD) turbulence. Our study concentrates on the inverse cascade of the magnetic vector potential. We examine the dependence of the statistical properties of such turbulence on dissipation and friction coefficients. We extend earlier work significantly by calculating fluid and magnetic spectra, probability distribution functions (PDFs) of the velocity, magnetic, vorticity, current, stream-function, and magnetic-vector-potential fields and their increments. We quantify the deviations of these PDFs from Gaussian ones by computing their flatnesses and hyperflatnesses. We also present PDFs of the Okubo-Weiss parameter, which distinguishes between vortical and extensional flow regions, and its magnetic analog. We show that the hyperflatnesses of PDFs of the increments of the stream-function and the magnetic vector potential exhibit significant scale dependence and we examine the implication of this for the multiscaling of structure functions. We compare our results with those of earlier studies.
In Chapter 4 we compare the statistical properties of 2D MHD turbulence for two different energy injection scales. We present systematic DNSs of statistically steady 2D MHD turbulence. Our two DNSs are distinguished by kinj, the wave number at which we inject energy into the system. In our first DNS (run R1), kinj = 2 and, in the second (run R2) kinj = 250. We show that various statistical properties of the turbulent states in the runs R1 and R2 are strikingly different The nature of energy spectrum, probability distribution functions, and topological structures are compared for the two runs R1 and R2 are found to be strikingly different.
In Chapter 5 we study the hyperviscous Burgers equation for very high α, order of hyperviscosity [3]. We show, by using direct numerical simulations and theory, how, by increasing α in equations of hydrodynamics, there is a transition from a dissipative to a conservative system. This remarkable result, already conjectured for the asymptotic case α →∞ [U. Frisch et al., Phys. Rev. Lett. 101, 144501 (2008)], is now shown to be true for any large, but finite, value of α greater than a crossover value α crossover. We thus provide a self-consistent picture of how dissipative systems, under certain conditions, start behaving like conservative systems, and hence elucidate the subtle connection between equilibrium statistical mechanics and out-of-equilibrium turbulent flows.
In Chapter 6 we show how to use asymptotic-extrapolation and Richardson extrapolation methods to extract the exponents ξ p that characterize the dependence of the order-p moments of the velocity gradients on the Reynolds number Re. To use these extrapolation methods we must have high-precision data for such moments. We obtain these high-precision data by carrying out the most extensive, quadruple precision, pseudospectral DNSs of the Navier-Stokes equation.
|
382 |
Détection des grandes structures turbulentes dans les couches de mélange de type Rayleigh-Taylor en vue de la validation de modèles statistiques turbulents bi-structure / Large-scale structure detection in Rayleigh-Taylor turbulent mixing layers for the validation of statistical two-structure models.Watteaux, Romain 21 September 2011 (has links)
Cette thèse a pour objectif de détecter les structures turbulentes aux grandes échelles présentes dans une couche de mélange de type Rayleigh-Taylor incompressible à faible nombre d'Atwood. Diverses grandeurs statistiques conditionnées par la présence de ces structures ont été obtenues, et il est désormais possible de les comparer avec les résultats des modèles statistiques turbulents dits bi-structure, tel le modèle 2SFK développé au CEA. Afin de réaliser les simulations numériques directes du mélange turbulent, un code numérique tridimensionnel incompressible à densité variable a été développé. Ce code a été parallélisé dans les trois directions. Plusieurs méthodes de détection de structure ont été conçues et testées. Bien que toutes ces méthodes présentent différents intérêts, seule la plus efficace vis-à-vis de nos critères de détection a été gardée pour faire des simulations à forte résolution (plus d'un milliard de mailles, 1024^3). Un filtrage temporel de la vitesse verticale est utilisé dans cette méthode de détection afin de : 1) corriger les distorsions dues aux points d'arrêt et zones de recirculation dans l'écoulement, 2) minimiser l'effet de la turbulence aux petites échelles et mieux mettre en évidence les grandes échelles, 3) introduire un effet mémoire permettant de prolonger la bimodalité du champ de détection depuis les zones laminaires extérieures jusqu'au centre de la zone de mélange turbulent. Plusieurs simulations numériques directes 1024^3 ont été effectuées. Les résultats viennent conforter ceux obtenus avec le modèle bi-structure 2SFK et justifient une étude plus poussée des grandeurs statistiques en vue de sa validation. / This thesis aims at detecting large-scale turbulent structures in incompressible Rayleigh-Taylor mixing layers at low Atwood number. Various statistical quantities conditioned by structure presence have been obtained and it is now possible to compare them with results from two-structure statistical turbulent models such as the 2SFK model developed at CEA. In order to produce direct numerical simulations of the turbulent mixing, a three-dimensional, incompressible, variable-density numerical code was developed. This code is parallelized in the three directions. Several structure detection methods have been designed and tested. Although all these methods are of interest, only the most efficient with respect to our detection criteria has been retained for simulations at high resolution (over a billion cells, 1024^3). A time filtering of vertical velocity is used in this method to: 1) correct distortions due to stagnation points and recirculation zones in the flow, 2) minimize small-scale turbulence effects and better highlight large-scales, 3) introduce a memory effect in order to extend bimodality of the detection field from the external laminar zones up to the centre of the turbulent mixing zone. Several direct numerical simulations at 1024^3 have been achieved. Results support those obtained with two-structure 2SFK model and justify further studies for its validation.
|
383 |
Turbulent dynamics of the solar wind / Dynamique turbulente du vent solaireMontagud Camps, Victor 22 October 2018 (has links)
Le but de cette thèse est l'étude du développement de la turbulence dans le vent solaire entre 0.2 et 1 unité astronomique (UA) du soleil (i.e. l'orbite terrestre). L'étude est faite en résolvant numériquement les équations de la MHD après soustraction de l'écoulement moyen radial. Les deux aspects de la turbulence qui nous intéressent sont la structure 3D des spectres d’énergie et le chauffage du plasma qui résulte de la dissipation turbulente des tourbillons et couches de courant emportés par le vent. On cherche à déterminer quelles sont les conditions du plasma près du soleil qui permettent d’aboutir à ce qu'on observe à 1 UA. Un but important de mon travail est aussi de déterminer si la physique qui est présente dans les équations que j'intègre (la MHD) suffit pour arriver à reproduire ce qu'on a déjà observé dans cet intervalle de distance. Nous introduisons le contexte de notre travail dans la première partie. On y trouve les équations de base, une introduction à la turbulence, un résumé sur la physique du vent solaire et de la couronne solaire. La partie 2 sera consacrée à l'étude de l'anisotropie de la cascade turbulente, et plus précisément du spectre 3D. Dans la zone inertielle, les mesures in-situ vers 1 UA montrent des figures complexes pour ces spectres qu'on peut interpréter de plusieurs façons : nos simulations numériques permettent de lever toute ambiguïté. Plus précisément, la question est de savoir quand intervient l'axe soleil-terre, et quand intervient l'axe du champ magnétique moyen. La partie trois est centrée sur le chauffage turbulent dans les vents rapides et lents. Entre 0.3 et 1 UA, la température des protons diminue anormalement lentement, ce qui indique une source de chauffage, qu'on suppose ici être la dissipation des tourbillons et couches de courant emportés par le vent. Pour démontrer que cette hypothèse est raisonnable, nous considérons d’abord le modèle de Burgers qui est un modèle pour l'évolution d’ondes sonores. Ensuite, nous passons à l'étude du cas plus complexe d'un volume de plasma 3D. Nous examinerons les conditions initiales correspondant aux vents lents et rapides. Dans les deux cas, on adoptera des anisotropies spectrales différentes. Dans la dernière partie, nous exposerons les conclusions de notre travail et proposerons d'introduire l'anisotropie de la température dans un travail futur. / The aim of this thesis is the study of the development of turbulence in the solar wind between 0.2 and 1 astronomical unit (AU) from the Sun (i.e. Earth’s orbit). The study is done by solving the magnetohydrodynamics equations (MHD) after subtracting the mean radial flow. The two aspects of turbulence that interest us are the 3D structure of the energy spectra and the heating of plasma that results from the turbulent dissipation of eddies and current layers transported by the wind. We want to determine which conditions of the plasma close to the Sun can result into what we observe at 1 AU. We have relatively detailed measurements of what happens between 0.3 and 1 AU. One important goal of this work is to determine if the physics present in the equations that are integrated (MHD) is sufficient to reproduce what is observed in this interval of distances. We introduce the context of our work in the first part. We give a summary of the physics concerning the solar wind and the solar corona, and the basic equations used to describe the solar wind plasma and an introduction to turbulence. Part 2 is dedicated to the study of anisotropy in the turbulent cascade, which characterizes 3D spectra. In the inertial range, in-situ measurements at 1 AU show complex figures for these spectra that we can interpret in several ways : numerical simulations allow to clear ambiguities. An important question is to know whether the Earth-Sun symmetry axis or the mean magnetic field axis is dominant.The third part focuses on turbulent heating in fast and slow winds. Between 0.3 and 1 AU, proton temperature decreases more slowly than expected, which requires a heating source. This source is supposed to be the continuous dissipation of eddies and current layers transported by the wind. To start with, we consider the simple case of Burgers equation, which is a one-dimensional model for shock formation. Thereupon, we switch to the 3-dimensional case, where we consider initial conditions appropriate for slow and fast winds. In the last part we expose our conclusions and propose the implementation of temperature anisotropy as future work.
|
384 |
Effet de la turbulence optique sur l'astrométrie solaire par imagerie / Effect of optical turbulence on solar astrometry by imagingIkhlef, Rabah 16 December 2016 (has links)
L'objectif est de comprendre d'effet de la turbulence optique sur la mesure au sol du rayon solaire. La mesure du rayon solaire avec précision est importante pour les modèles de structure et d'évolution solaire et stellaire. En plus l'activité solaire a une influence certaine sur le climat terrestre. Le travail de thèse a porté sur la calibration et l'exploitation de données issues des télescopes SODISM2, dédié à la mesure du rayon solaire par imagerie pleine, et MISOLFA un moniteur de turbulence qui permet d'estimer les paramètres spatio-temporels de celle-ci. Les premières mesures de MISOLFA montrent sa capacité pour l'extraction des profils de la turbulence et des paramètres intégrés à partir des fluctuations des angles d'arrivées observées sur le bord solaire. Les paramètres spatiaux issus des fluctuations d'intensité dans la voie pupille montrent un bon accord avec les paramètres issus de la voie image. Les premières mesures du temps caractéristique des angles d'arrivée ont été également obtenues qui donnent une valeur moyenne de 5.3 ms sur une année de mesures. SODISM2 est la copie d'un instrument à bord du satellite PICARD (2010-2014). Les premières mesures de cet instrument montrent une grande stabilité et une dispersion de l'ordre de 200 mas. Une tendance à la baisse de l'ordre de 12 mas/an a été également observée mais elle demeure non significative compte tenu de la dispersion. Une nouvelle méthode a été élaborée pour l'obtention des flat field en utilisant les cartes de contrastes. Des simulations numériques d'imagerie à travers la turbulence montrent un effet systématique des paramètres de la turbulence sur l'estimation du rayon et de la largeur du limbe / The objective is to understand the effect of optical turbulence on ground-based solar radius measurements. The measurement of the solar radius with accuracy is important for models of solar and stellar structure and evolution. In addition solar activity has an evident influence on the terrestrial climate. The work focused on the calibration and exploitation of data obtained by two telescopes: SODISM2 dedicated to the measurement of the solar radius by full-disk imaging, and MISOLFA a turbulence monitor which allows to estimate the turbulence spatio-temporal parameters. The first measurements of MISOLFA show its capacity for the extraction of turbulence profiles and integrated parameters from the angle-of-arrival fluctuations observed on the solar edge. The spatial parameters estimated from the intensity fluctuations in the pupil plane show a good agreement with the parameters coming from the image plane. The first measurements of the angle-of-arrival characteristic time have also been obtained which give an average value of 5.3 ms over a year of measurements. SODISM2 is the qualification model of an instrument on board the PICARD satellite (2010-2014). The first measurements of this instrument show a high stability and a dispersion of the order of 200 mas (milli-arcseconds). A downward trend on the order of 12 mas/year was also observed but it is not significant given the dispersion of the measurements. A new method was developed for obtaining flat fields using contrast maps. Numerical simulations of imaging through turbulence show a systematic bias introduced by the effect of the turbulence parameters on the estimation of the radius and the limb width
|
385 |
Interaction of a Tunnel-like Acoustic Disturbance Field with a Shock WaveLiu, Yuchen 30 September 2022 (has links)
No description available.
|
386 |
ALGEBRAIC REYNOLDS STRESS MODELING OF PLANAR MIXING LAYER FLOWSYODER, DENNIS ALLEN 13 July 2005 (has links)
No description available.
|
387 |
The Space-time Structure of an Axisymmetric Turbulent Boundary Layer Ingested by a RotorBalantrapu, Neehar Agastya 19 January 2021 (has links)
A low-speed, axisymmetric turbulent boundary layer under a strong adverse pressure gradient is experimentally studied for its relevance to marine applications, urban air-transportation and turbulence ingestion noise. The combined effect of lateral curvature and streamwise pressure gradient are examined on the mean flow, turbulence structure, velocity correlations and wall pressure fluctuations. Additionally, the upstream influence of a rotor operating in this flow is examined to improve the understanding of the turbulence necessary to develop advanced noise prediction tools. Measurements were made in Virginia Tech Stability tunnel documenting the flow over a 0.432-m diameter body-of-revolution comprised of a forward nose-cone, a constant diameter mid-body and a 20 degree tail-cone, at a length based Reynolds number of 1.2 million.
The principal finding of this work is the resemblance of the boundary layer to a free-shear layer where the turbulence far from the wall plays a dominant role, unlike in the canonical case of the flat-plate boundary layer. The mean flow along the tail developed inflection points in the outer regions and the associated velocity and turbulence stress profiles were self-similar with a recently proposed embedded shear layer scaling. As the mean flow decelerates downstream, the large-scale motions energize and grow along with the boundary layer thickness; However, the structure is roughly self-similar with the shear-layer scaling, emphasizing the role of the shear-layer in the large-scale structure. Additionally, the correlation structure is discussed to provide information towards the development of turbulence models and aeroacoustic predictions.
The associated wall pressure fluctuations, measured with a longitudinal array of microphones, evolved significantly downstream with the dimensional wall pressure spectra weakening by over 20-dB per Hz. However, the spectra collapsed to within 2-dB with the wall-wake scaling, where the pressure-scale is the wall shear stress, and the time-scale is derived from the boundary layer thickness and edge velocity. The success of this scaling, even in the viscous roll-off regions, suggests the increasing importance of the outer region on the near-wall turbulence and wall-pressure. Investigation of the space-time structure revealed the presence of a quasi-periodic feature with the conditional signature of a roller-eddy. The structure appeared to scale with the wall-wake scaling, and was found to convect downstream at speeds matching those at the inflection points (and outer turbulence peak). It is hypothesized that the outer region turbulence in strong adverse pressure gradient flow strongly drive the near-wall turbulence and therefore both the wall pressure and shear stress.
Subsequent measurements made with the rotor operating at the tail, using high-speed particle image velocimetry, provided the space-time structure of the inflow turbulence as a function of the rotor thrust. The impact of the rotor on the mean flow, turbulence and correlation structure in the vicinity of the rotor is discussed to supply information towards validating numerical simulations and developing turbulence models that account for the distortion due to the rotor.
This work was sponsored by the Office of Naval Research, in particular Drs. Ki-Han Kim and John Muench under grants N00014-17-1-2698 and N00014-20-1-2650. / Doctor of Philosophy / Understanding turbulent flows adjacent to surfaces placed in fluid flows is necessary to develop efficient technologies to mitigate undesirable drag, vibrations and noise. Particularly, this is of an increased interest with the imminent abundance of urban short-haul air transportation. While several fundamental aspects of these flows have been clarified, certain specific areas still remain to be addressed, including the impact of curved surfaces, like those of submarine hulls and aircraft fuselage, and the impact of mean pressure gradients.
This study seeks to fill some of these gaps by studying the flow over a body-of-revolution through wind tunnel experiments. The nature of the velocity and wall-pressure fluctuations are examined in detail. It was found that the boundary layer was significantly different from the canonical case of a flat-plate flow, with the mean velocity and turbulence structure developing the characteristics of a free-shear layer (flows unbounded by surfaces). Specifically, the velocity and turbulence intensity appeared self-similar with a recently proposed embedded shear layer scaling, which is based on the parameters at the inflection point in the mean velocity profile. The large-scale motions in the outer regions, despite energizing and growing as the flow decelerated downstream, appeared self-similar with the shear layer parameters, emphasizing the role of shear layer motions within in the boundary layer. This is important since the turbulence relatively further from the wall are now the important sources of pressure fluctuations and therefore drag, vibrations and noise. The associated wall-pressure fluctuation were studied with a focus on the wall-pressure spectrum and the space-time structure. A quasi-periodic feature was detected in the instantaneous fluctuations, which had a conditional structure reminiscent of a conditional roller, and appeared to convect downstream at speeds matching those at the inflection points in the velocity profile. Therefore it is hypothesized that the large-scale motions in the embedded shear layer play a dominant role on the near-wall turbulence and therefore on the wall pressure and shear-stress. This is different from the behavior of the wall-studied flow past a flat-plate. It is therefore important to factor this into technologies aiming to increase the efficiency and quieten the vehicles
|
388 |
Analysis of Time-Varying Characteristics of Simulated Turbulence in Wind TunnelTian, Lin 09 July 1999 (has links)
Eight roughness configurations in Clemson boundary layer wind tunnel are presented. For these configurations, flow parameters such as turbulent intensities, integral length scales, large- and small- scale turbulence, and spectra of velocity components of the wind are obtained and studied to the simulated turbulence. At the same time, new analyzing tools, orthogonal wavelet techniques, are applied to provide additional information in time domain. This makes it possible to study the intermittency event, one important characteristic associated with pressure peak activities in turbulence. Three parameters, scale energy, intermittency factor and intermittency energy are defined. Variation of these quantities as a result of different configuration is discussed. Finally, the corresponding variations in measured pressure peaks in relation with the variations of configuration as well as with the intermittency parameters are investigated. The work here is of important significance for future wind tunnel and field data comparison, and this could help to find the best simulation among all configurations. / Master of Science
|
389 |
Effects of Freestream Turbulence, Turbulence Length Scale, and Reynolds Number on Turbine Blade Heat Transfer in a Transonic CascadeCarullo, Jeffrey Stephen 09 January 2007 (has links)
This paper experimentally investigates the effect of high freestream turbulence intensity, turbulence length scale, and exit Reynolds number on the surface heat transfer distribution of a turbine blade at realistic engine Mach numbers. Passive turbulence grids were used to generate freestream turbulence levels of 2%, 12%, and 14% at the cascade inlet. The turbulence grids produced length scales normalized by the blade pitch of 0.02, 0.26, and 0.41, respectively. Surface heat transfer measurements were made at the midspan of the blade using thin film gauges. Experiments were performed at exit Mach numbers of 0.55, 0.78 and 1.03 which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 6 x 105, 8 x 105, and 11 x 105, based upon true chord.
The experimental results showed that the high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the blade as compared to the low freestream turbulence case. At nominal conditions, exit Mach 0.78, average heat transfer augmentations of 23% and 35% were observed on the pressure side and suction side of the blade, respectively. / Master of Science
|
390 |
A numerical study on turbulent oscillatory plane Couette flowHo, Wai-man, 何慧敏 January 2004 (has links)
published_or_final_version / abstract / toc / Mechanical Engineering / Master / Master of Philosophy
|
Page generated in 0.0347 seconds