• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 513
  • 154
  • 99
  • 73
  • 20
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 14
  • 12
  • 8
  • 4
  • Tagged with
  • 1065
  • 523
  • 410
  • 195
  • 159
  • 131
  • 129
  • 123
  • 118
  • 102
  • 98
  • 93
  • 91
  • 89
  • 87
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Structure and mechanism of protein tyrosine phosphatase-like phytases

Gruninger, Robert J, University of Lethbridge. Faculty of Arts and Science January 2009 (has links)
The structure and mechanism of the Protein Tyrosine Phosphatase-like Phytases (PTPLPs) from Selenomonas ruminantium (PhyAsr) and Mitsuokella multacida (PhyAmm) were investigated using a combination of enzyme kinetics, site-directed mutagenesis, and X-ray crystallography. I show that PTPLPs use a classical protein tyrosine phosphatase catalytic mechanism and adopt a core PTP fold. Several unique structural features of PTPLPs confer specificity for inositol phosphates. The effect of ionic strength and oxidation on the kinetics and structure of PTPLPs was investigated. The structural consequences of reversible and irreversible oxidation on PTPLPs and PTPs are compared and discussed. We determine the structural basis of substrate specificity in PTPLPs and propose a novel reaction mechanism for the hydrolysis of inositol polyphosphates by PTPLPs. Finally, the structure and function of a unique tandemly repeated phytase has been determined. We show that the active sites of the tandem repeat possess significantly different specificities for inositol polyphosphate. / xix, 148 leaves : ill. (some col.) ; 29 cm
132

Expanding our knowledge of protein tyrosine phosphatase-like phytases : mechanism, substrate specificity and pathways of myo-inositol hexakisphosphate dephosphorylation

Puhl, Aaron A., University of Lethbridge. Faculty of Arts and Science January 2006 (has links)
A novel bacterial protein tyrosine phosphatase (PTP)-like enzyme has recently been isolated that has a PTP-like active site and fold and the ability to dephosphorylate myo-inositol hexakisphosphate. In order to expand our knowledge of this novel class of enzyme, four new representative genes were cloned from 3 different anaerobic bacteria related to clostridia and the recombinant gene products were examined. A combination of site-directed mutagenesis, kinetic, and high-performance ion-pair chromatography studies were used to elucidate the mechanism of hydrolysis, substrate specificity, and pathways of Ins P6 dephosphorylation. The data indicate that these enzymes follow a classical PTP mechanism of hydrolysis and have a general specificity for polyphosphorylated myo-inositol substrates. These enzymes dephosphorylate Ins P6 in a distributive manner, and have the most highly ordered pathways of sequential dephosphorylation of InsP6 characterized to date. Bioinformatic analyses have indicated homologues that are involved in the regulation of cellular function. / x, 138 leaves ; 29 cm.
133

Exposure of endothelial cells to shear stress stimulates protein tryosine phosphorylation

Jiang, Liying 05 1900 (has links)
No description available.
134

THE ROLE OF NEU1 SIALIDASE IN Trk TYROSINE KINASE RECEPTOR ACTIVATION

Jayanth, Preethi 06 August 2010 (has links)
The signaling pathways of tyrosine kinase Trk receptors and their downstream biological effects are well known, but the parameters controlling the interactions between the receptors and their natural ligands still remain to be defined. Recent published reports from our laboratory indicate that nerve growth factor (NGF)-induced TrkA receptor activation is dependent on a membrane cellular sialidase. This sialidase activity specifically targets and hydrolyzes sialyl α-2, 3-linked β-galactosyl residues resulting in the desialylation and activation of the receptor. These findings support a novel hypothesis that places mammalian sialidase(s) in a cycle of activation of these receptors by their natural ligand. Taken together, they also predict a prerequisite desialylation of Trk receptors caused by a sialidase on the cell surface enabling the removal of a steric hindrance to receptor dimerization. Until now, the sialidase associated with neurotrophin-treated live Trk-expressing cells has not been identified. The molecular mechanism(s) of sialidase activation by neurotrophin factors binding to their receptors also remains unknown. In this thesis, the novel role of Neu1 sialidase in the activation of ligand-induced TrkA and TrkB receptors has been identified. It has been reported for the first time that Neu1 is already in complex with naïve and ligand-induced Trk receptors. In addition, a membrane sialidase mechanism initiated by NGF binding to TrkA has been indentified. It suggests a potentiation of GPCR-signaling via membrane Gαi subunit proteins and matrix metalloproteinase-9 (MMP-9) activation to induce Neu1 sialidase activation in live TrkA- and TrkB-expressing cells and primary neurons. These results establish a unique mode of regulation of Trk receptors by their natural ligand and define a new function for Neu1 sialidase. Preliminary data indicate that members of the family of tyrosine kinase receptors like epidermal growth factor receptor (EGFR) and insulin receptor are also under the same regulatory control of Neu1 sialidase. Recent reports from the laboratory have indicated that ligand-induced activation of the highly glycosylated Toll-like receptors, TLR-2,-3 and -4 is also dependent on Neu1 sialidase on the cell surface. Taken all together, the findings in this thesis uncover a Neu1 and MMP-9 cross-talk on the cell surface which is critically essential for neurotrophin-induced Trk tyrosine kinase receptor activation and neuron function. / Thesis (Ph.D, Microbiology & Immunology) -- Queen's University, 2010-04-26 11:44:51.418
135

The Role of Oncogenic Tyrosine Kinase NPM-ALK in Anaplastic Large Cell Lymphoma Pathobiology

Hegazy, Samar, A T Unknown Date
No description available.
136

Protein tyrosine nitration in mast cells

Sekar, Yokananth Unknown Date
No description available.
137

Characterization of HD-PTP phosphatase activity and identification of its substratesbinding partners

Zhang, Yu Ling. January 2008 (has links)
Histidine-Domain-Protein-Tyrosine-Phosphatase (HD-PTP) has been classified as a non-transmembrane protein tyrosine phosphatase (PTP), however, its catalytic activity has not been appropriately characterized. In this thesis, the tyrosine phosphatase activity of HD-PTP was characterized. To do so, the HD-PTP protein was successfully purified using the FLAG-TAG purification system and an enzymatic assay was carried out using the DiFMUP fluorogenic substrate. My results suggest that HD-PTP is an inactive PTP that can be reactivated upon the back mutation of a conserved amino acid located in its catalytic domain motif 9, which diverges from the PTP consensus sequence. Interestingly, the gene which encodes for HD-PTP is located within the tumor suppressor region on the human chromosome 3p21.3. Furthermore, we determined through colony formation assays that the active mutation does not affect the tumor suppressor potential of HD-PTP. Although wild type HD-PTP is an inactive tyrosine phosphatase, it may act as a natural trapping mutant, thus preserving its strong binding potential for phosphorylated signaling proteins. Since the active HD-PTP mutant should have lost its ability to bind phosphorylated signaling proteins, it was used in a substrate trapping experiment to identify potential binding partners. Four putative binding partners were then purified and identified through multidimensional protein identification technique (MudPIT). Lastly, cell lines that stably express HD-PTP were generated for future studies in the identification of binding partners.
138

The role of protein tyrosine phosphorylation in the resistance mechanism against tumor necrosis factor-mediated lysis

Sasaki, Carl Y January 1995 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1995. / Includes bibliographical references (leaves 115-129). / Microfiche. / ix, 129 leaves, bound ill. 29 cm
139

Acute regulation of tyrosine hydroxylase

Gordon, Sarah January 2009 (has links)
Research Doctorate - Doctor of Philosopy (PhD) / Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated acutely by a combination of phosphorylation of three key serine (Ser) residues (Ser19, Ser31 and Ser40), and feedback inhibition by the catecholamines. Phosphorylation of Ser40 directly increases TH activity by relieving feedback inhibition of the enzyme. The phosphorylation of Ser19 or Ser31 can potentiate the phosphorylation of Ser40 in a process known as hierarchical phosphorylation. The 2 major human TH isoforms, hTH1 and hTH2, are differentially regulated by hierarchical phosphorylation in vitro. In this study, the human neuroblastoma SH-SY5Y cell line has been transfected with hTH1 and hTH2, and it has been demonstrated that phosphorylation of Ser31 potentiates the phosphorylation of Ser40 in hTH1. Phosphorylation of the equivalent Ser31 residue in hTH2 was not detectable, and thus this enzyme is not subject to Ser31-mediated hierarchical phosphorylation of Ser40 in situ. This is the first study to demonstrate that hTH1 and hTH2 are differentially regulated in situ. In addition, we have examined the nature of feedback inhibition of TH by the catecholamines. In addition to the high affinity, non-dissociable dopamine binding that is relieved by Ser40 phosphorylation, we have identified a second low affinity, readily dissociable binding site which regulates TH activity both in vitro and in situ regardless of the phosphorylation state of the enzyme. This low affinity binding site responds to changes in cytosolic catecholamine levels in situ in order to regulate TH activity. This work has contributed to our understanding of the complex nature of the regulation of TH activity.
140

The transforming potential and functional analysis of the c-Kit receptor tyrosine kinase and its natural occurring isoforms / by Georgina Caruana.

Caruana, Georgina January 1996 (has links)
Copy of author's previously published article inserted into back cover pocket. / Bibliography: leaves 157-214. / iv, 214, [131] leaves, [19] leaves of plates : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The function of receptor tyrosine kinase, c-Kit is examined in relation to the role of receptor levels in factor dependence and cell transformation and the function of several naturally occurring isoforms of the human c-Kit receptor were analyzed by expressing cDNA encoding these isoforms in murine cells. / Thesis (Ph.D.)--University of Adelaide, Dept. of Microbiology and Immunology, 1996

Page generated in 0.0295 seconds