• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Role of Oncogenic Tyrosine Kinase NPM-ALK in Anaplastic Large Cell Lymphoma Pathobiology

Hegazy, Samar, A T Unknown Date
No description available.
2

Conséquences cellulaires de la formation de translocations chromosomiques : le modèle du lymphome anaplasique à grandes cellules (ALCL) / Cellular Consequences Of Chromosomal Translocation Formation : Model Of The Anaplastic Large Cell Lymphoma (ALCL)

Piganeau, Marion 12 April 2016 (has links)
Les translocations chromosomiques sont des événements cellulaires rares signatures de nombreux cancers, pouvant mener à l’expression de nouveaux gènes de fusion oncogènes ou à la dérégulation d’un oncogène existant. Cependant, le lien direct entre la formation de translocations et la tumorigenèse n’est pas toujours bien établi. Jusqu’à présent, la modélisation de translocations se limitait principalement à la surexpression du gène de fusion créé. Pour mieux comprendre leur contribution à l’oncogenèse, nous avons développé une nouvelle méthode pour induire des translocations oncogéniques de novo, afin de recréer plus fidèlement les premières étapes de la transformation cellulaire.Pour cela, nous nous appuyons sur la technologie des nucléases artificielles telles que les nucléases à doigt de zinc, les TALEN (TALE Nucleases) et le système CRISPR/Cas9 (Clustered Regularly Interspaced Palindromic Repeats) pour générer des cassures ciblées de l’ADN et induire la formation de remaniements chromosomiques. Nous nous sommes particulièrement concentrés sur l’induction de la translocation modèle t(2;5)(p23;q32) et du gène de fusion NPM-ALK, associés au Lymphome Anaplasique à Grandes Cellules (ALCL), dans divers modèles cellulaires. Nous avons ainsi mis en évidence des propriétés oncogéniques du gène de fusion NPM-ALK exprimé sous son promoteur endogène suite à la formation du réarrangement chromosomique. Cependant, l’induction de la translocation dans des lymphocytes T primaires suggère que cet événement ne suffit pas à lui seul à initier l’oncogenèse, et nécessite probablement un contexte génétique ou épigénétique favorable. / Chromosomal translocations are signatures of numerous cancers and lead to expression of fusion genes that act as oncogenes. However, the wealth of genomic aberrations found in cancer makes it challenging to assign a specific phenotypic change to a specific aberration. We set out to use genome editing with Zinc Finger Nucleases (ZFN), Tale Effector Nucleases (TALEN), and the CRISPR/Cas9 (Clustered Regularly Interspaced Palindromic Repeats) to induce de novo specific chromosomal translocations in human cells, thus generating new models to interrogate the contribution of tumor-related translocations in first steps of oncogenesis. We specially focused on Anaplastic Large Cell Lymphoma (ALCL) t(2;5) translocation and NPM-ALK consequent fusion gene. For the first time, we highlighted oncogenic properties for NPM-ALK fusion expressed under endogenous promoter. However, translocation induction in primary T cells suggests that t(2;5) is not sufficient to initiate ALCL oncogenesis, and likely requires favourable genetic or epigenetic or context.
3

Investigating the Caspase Cleavage of the JunB Transcription Factor

Lee, Jason KH Unknown Date
No description available.
4

Die Rolle des Transkriptionsfaktors IRF4 bei der molekularen Pathogenese des anaplastisch-großzelligen Lymphoms

Weilemann, André 20 February 2017 (has links)
Anaplastisch-großzellige Lymphome (ALCL) repräsentieren eine Untergruppe der peripheren T-Zell-Lymphome und können über das Vorhandensein einer Translokation, die das ALK-Gen betrifft, in ALK-positive und ALK-negative ALCL unterteilt werden. Präliminäre Daten implizieren eine starke Expression des Transkriptionsfaktors IRF4 bei ALCL-Patientenproben, unabhängig des ALCL-Subtyps. Allerdings war die Rolle von IRF4 bei der Pathogenese des ALCL bislang wenig verstanden. In unserer Studie konnten wir zeigen, dass eine shRNA-vermittelte Herunterregulation von IRF4 Zytotoxizität im ALCL-Zelllinienmodell induziert und in vivo das Tumorwachstum signifikant verlangsamt. Genexpressionsanalysen zeigten die globale Rolle von IRF4 im Genexpressionsnetzwerk des ALCL über die Deregulation essentieller zellulärer Prozesse, wie der Zellzykluskontrolle und der DNA-Reparatur, sowie bekannter onkogener Signalwege wie Notch oder MYC. Wir konnten zeigen, dass IRF4 direkt an der Expression des bekannten onkogenen Transkriptionsfaktors MYC beteiligt ist und bestätigten zusätzlich die Abhängigkeit der ALCL-Zelllinien von dessen Expression. Die pharmakologische Inhibierung von MYC führte zum Rückgang der Zellviabilität aller ALCL-Zelllinien. Zusammenfassend zeigen diese Resultate, dass die Expression von IRF4 essentiell für die Proliferation von ALCL-Zelllinien ist und dass die von IRF4 regulierte Expression von MYC ein vielversprechendes therapeutisches Ziel für die zukünftige Behandlung sowohl ALK-positiver als auch ALK-negativer ALCL-Patienten darstellt. / Anaplastic large cell lymphoma (ALCL) is a distinct entity of peripheral T-cell lymphomas. ALCLs can be divided into two subtypes with respect to the presence of translocations involving the ALK gene (ALK-positive and ALK-negative). It has been shown that the interferon regulatory factor 4 (IRF4) is highly expressed in both ALCL subtypes but its role in the pathogenesis of these lymphomas remained unclear. Our study reveals an addiction to the expression of IRF4 in cell lines of both ALCL subtypes. Furthermore, we were able to transfer this into an ALCL xenograft mouse model showing the significant impact of IRF4 deregulation on ALCL tumor growth in vivo. Gene expression profiling after IRF4 knockdown highlighted the function of IRF4 in anaplastic large cell lymphoma by significant downregulation of genes involved in essential cellular processes like cell cycle control and DNA repair as well as known targets of the oncogenic transcription factor MYC. We were able to identify MYC as a direct target of IRF4 in both ALCL subtypes and further studies revealed an addiction of ALCLs to MYC expression as well. Pharmacological inhibition of MYC was toxic to all tested ALCL cell lines, indicating that IRF4 and MYC signaling may represent promising targets for future therapies of patients diagnosed with anaplastic large cell lymphoma.
5

The Layered Semiconductor Cu(Sb₂S₃)[AlCl₄]

Grasser, Matthias A., Finzel, Kati, Ruck, Michael 04 April 2024 (has links)
Sb₂S₃ and CuCl were reacted in the ionic liquid [BMIm]Cl · 4.4AlCl₃ (BMIm=1-n-butyl-3-methylimidazolium) at 200°C. Upon cooling to room temperature, orange-red colored, air-sensitive crystals of Cu(Sb₂S₃)[AlCl₄] precipitated. X-ray diffraction on a single-crystal revealed an orthorhombic crystal structure, in which cationic [Cu(Sb₂S₃)]⁺ layers are separated by tetrahedral [AlCl₄]⁻ anions. The uncharged Sb₂S₃ partial structure consists of one-dimensional strands with covalent Sb-S single bonds. The copper(I) cation is coordinated by three sulfur atoms and by one of chlorine atoms of the [AlCl₄]⁻ anion. An optical band gap of 2.14 eV was deduced from UV/Vis spectra. In very good agreement, a band gap of 2.07 eV results from DFT-based calculations involving a new implementation of the bifunctional formalism for the exchange energy. By treatment with 0.1 molar hydrochloric acid, AlCl₃ was leached from Cu(Sb₂S₃)[AlCl₄] yielding a compound with the presumed composition Cu(Sb₂S₃)Cl. Hydrolysis at higher pH resulted in Cu₂₋ₓS and Sb₄O₅Cl₂.
6

Apport de l'analyse des réarrangements du TCR dans l'oncogenèse et l'ontogénie T / Contribution of TCR rearrangements analysis in oncogenesis and ontogeny T

Villarese, Patrick 01 October 2015 (has links)
Les cellules T maturent dans le thymus lors d’un processus très régulé par l’intermédiaire de facteurs intrinsèques, comme des facteurs de transcription, et des facteurs extrinsèques (par exemple des cytokines des cellules stromales). L’acquisition du potentiel T au cours de la thymopoïèse, à partir d’un précurseur médullaire, se réalise grâce à des étapes successives définies par l’expression de molécules de surface et par les différents réarrangements des gènes du TCR qui sont ordonnés : le TCRd étant le premier à se produire, suivi par le TCRg et TCRb, pour finir par le TCRa. Les réarrangements du TCR restent également parfaitement ordonnancés dans les leucémies aigues lymphoblastiques T et ce malgré l’accumulation successive d’évènements oncogéniques. Il est ainsi possible de définir trois sous-groupes immunogénétiques de LAL-T ; (i) les formes immatures n’exprimant pas de TCRb cytoplasmique (ii) les LAL-T matures exprimant un TCR de surface et enfin (iii) les LAL-T intermédiaires, dites pré-ab, exprimant le TCRb en intracytoplasmique sans expression membranaire d’un hétérodimère ab ou gd. Dans ce dernier sous groupe de LAL-T de phénotype cortical, deux oncogènes à homéodomaines, TLX1 et TLX3, appartenant à la famille des gènes homéotiques orphelins NKL, sont souvent dérégulés. Nous avons précédemment mis en évidence le rôle direct des oncoprotéines TLX dans le processus de l’arrêt de maturation, grâce à leur interaction avec le facteur de transcription ETS1, bloquant l’expression et les réarrangements du TCRa. Néanmoins, une partie des LAL-T corticales ne surexprime ni TLX1 ni TLX3, posant la question de l’implication potentielle d’autres gènes de la famille NKL dans le blocage de maturation. Nous avons donc réalisé une analyse transcriptionnelle de l’ensemble des 46 gènes de la famille NKL dans une large série de LAL-T et comparé les résultats avec ceux obtenus dans des sous populations thymiques humaines triées. Nous avons ainsi identifié 10 gènes dérégulés de manière ectopique dans notre série de LAL-T, incluant 6 gènes dont la dérégulation était inconnue dans ce contexte. Par ailleurs, nous avons mis au point une approche complexe combinant une analyse en CGH-array haute résolution, le dosage allélique du locus TCRa et un système de RT-PCR multiplex afin d’étudier de manière exhaustive le statut du locus TCRa dans cette même série de LAL-T. Nos résultats ont ainsi montré que ces nouveaux gènes NKL aboutissent aussi à une répression du TCRa par un mécanisme similaire à celui observé avec les oncoprotéines TLX. Les lymphomes anaplasiques (ALCL), qui sont caractérisés par une expression aberrante d’ALK, issue de la t(2;5), expriment des marqueurs d’activation T (CD30), cytotoxique (granzyme, perforin, TIA1) et des réarrangements clonaux du TCR, mais sans signalisation du TCR/CD3. Le stade du développement lymphoïde T où est initié la lymphomagenèse est inconnu, il est possible que cette translocation se produise avant l’expulsion thymique. Pour étudier cette hypothèse, nous avons analysé l’ensemble des TCR (d,g,b,a) par PCR et CGH array dans une série d’ALCL humain et utilisé un modèle murin de lymphomagénèse T dans lequel NPM-ALK est exprimé à l’aide du promoteur de CD4. Nous avons croisé ce premier modèle avec des souris transgéniques RAG déficient et/ou en présence d’un transgène TCR (OT1), afin d’étudier le rôle du TCR dans le développement tumoral. Le modèle de lymphomagenèse identifié est basé sur une expression de NPM-ALK dès les stades précoces de la différenciation thymique, lorsque le transcrit de fusion peut remplacer le TCRb, et lors de l’expansion des thymocytes corticaux au niveau de la « b-sélection ». Un TCR est cependant nécessaire pour la sortie du thymus, bien que perdu lors du développement des ALCL en périphérie. En conclusion, nous avons montré l’implication du TCR dans deux modèles d’oncogenèse. (...) / T cells mature in the thymus through a highly regulated process mediated by intrinsic factors (e.g. transcription factors) and extrinsic factors (e.g. cytokines or stromal cells). The acquisition of T lymphoid commitment during thymopoiesis, originating from a bone marrow precursor, is carried out through successive stages defined by the expression of various surface molecules and the precisely ordered TCR gene rearrangements; TCRd being the first to occur, followed by the TCRg and TCRb, and finally TCRa. TCR rearrangements are also highly coordinated in T acute lymphoblastic leukemia (T-ALL) despite the successive accumulation of oncogenic events. It is thus possible to define three immunogenetic subgroups of T-ALL; (I) the immature forms that do not express cytoplasmic TCRb, (ii) mature T-ALL which express a surface TCR and finally (iii) intermediate T-ALL, termed preab, which express intracytoplasmic TCRb without membrane expression of a TCR ab or gd Complex. In the latter subgroup, classically termed cortical T-ALL, two oncogenic transcription factors belonging to the NKL family of homeobox genes, TLX1 and TLX3, are commonly deregulated. We have previously demonstrated the direct role of TLX oncoproteins in the process of maturation arrest through their interaction with the ETS1 transcription factor, which blocks expression and rearrangements of TCRa. Not all cortical T-ALL cortical overexpress TLX1 nor TLX3, however, suggesting that other NKL family genes might be involved in the maturation arrest. We therefore, conducted a transcriptional analysis of all 46 NKL family genes in a large series of T-ALL and compared the results with those obtained in sorted human thymic subpopulations. We identified 10 ‘ectopic’ deregulated genes in T-ALL, including 6 genes whose deregulation was previously unknown in this leukemia. By combining high resolution CGH array, allelic of TCRa locus dosage and a novel TCRa RT-PCR multiplex, we show that these deregulated NKL genes also lead to inhibition of TCRa rearrangement, similar to that observed with TLX. These date demonstrate that homeobox inhibition of TCRa rearrangement is likely to explain the maturation arrest in the majority of cortical T-ALL, the commonest and most emblematic subgroup in this leukemia. Anaplastic lymphoma (ALCL), which are characterized by t(2;5) driven aberrant expression of ALK, express T activation markers (CD30), cytotoxic (granzyme, perforin, TIA1), and clonal TCR rearrangements in the intriguing absence of TCR/CD3 signaling. It is not clear at what stage of development ALCL lymphomagenesis is initiated, but as the expression of NPM is ubiquitous, it is possible that this translocation occurs before thymic egress. To investigate this, we analyzed all TCR(a,b,g,d) by PCR and CGH array in a series of human ALCL and compared these results with a T lymphomagenesis murine model in which NPM-ALK is regulated by the CD4 promoter. We crossed this first model with RAG deficient transgenic mice in the presence or not of a TCR transgene (OT1), to study the role of the TCR in tumor development. NPM-ALK expression from the earliest stages of thymic differentiation allow the fusion transcript to replace TCRb during the cortical thymic cellular expansion process known as "beta-selection". A TCR is, however, necessary for thymus egress, but is subsequently lost during the development of ALCL in the periphery, suggesting that the coexistence of TCR and NPM-ALK signaling is not compatible with lymphomagenesis and that the TCR may act as a tumor suppressor gene. In conclusion, we have delineated the involvement of TCRa in two models of oncogenesis. In T-ALL, NKL oncoproteins NKL prevent TCRa rearrangements and block cells at the highly proliferative TCRb-selection cortical thymic stage. In ALCL, a functional TCR appears to act as a tumor suppressor gene. Both models pave the way to differentiation therapy via TCR modulation.
7

Apport de l'analyse des réarrangements du TCR dans l'oncogenèse et l'ontogénie T / Contribution of TCR rearrangements analysis in oncogenesis and ontogeny T

Villarese, Patrick 01 October 2015 (has links)
Les cellules T maturent dans le thymus lors d’un processus très régulé par l’intermédiaire de facteurs intrinsèques, comme des facteurs de transcription, et des facteurs extrinsèques (par exemple des cytokines des cellules stromales). L’acquisition du potentiel T au cours de la thymopoïèse, à partir d’un précurseur médullaire, se réalise grâce à des étapes successives définies par l’expression de molécules de surface et par les différents réarrangements des gènes du TCR qui sont ordonnés : le TCRd étant le premier à se produire, suivi par le TCRg et TCRb, pour finir par le TCRa. Les réarrangements du TCR restent également parfaitement ordonnancés dans les leucémies aigues lymphoblastiques T et ce malgré l’accumulation successive d’évènements oncogéniques. Il est ainsi possible de définir trois sous-groupes immunogénétiques de LAL-T ; (i) les formes immatures n’exprimant pas de TCRb cytoplasmique (ii) les LAL-T matures exprimant un TCR de surface et enfin (iii) les LAL-T intermédiaires, dites pré-ab, exprimant le TCRb en intracytoplasmique sans expression membranaire d’un hétérodimère ab ou gd. Dans ce dernier sous groupe de LAL-T de phénotype cortical, deux oncogènes à homéodomaines, TLX1 et TLX3, appartenant à la famille des gènes homéotiques orphelins NKL, sont souvent dérégulés. Nous avons précédemment mis en évidence le rôle direct des oncoprotéines TLX dans le processus de l’arrêt de maturation, grâce à leur interaction avec le facteur de transcription ETS1, bloquant l’expression et les réarrangements du TCRa. Néanmoins, une partie des LAL-T corticales ne surexprime ni TLX1 ni TLX3, posant la question de l’implication potentielle d’autres gènes de la famille NKL dans le blocage de maturation. Nous avons donc réalisé une analyse transcriptionnelle de l’ensemble des 46 gènes de la famille NKL dans une large série de LAL-T et comparé les résultats avec ceux obtenus dans des sous populations thymiques humaines triées. Nous avons ainsi identifié 10 gènes dérégulés de manière ectopique dans notre série de LAL-T, incluant 6 gènes dont la dérégulation était inconnue dans ce contexte. Par ailleurs, nous avons mis au point une approche complexe combinant une analyse en CGH-array haute résolution, le dosage allélique du locus TCRa et un système de RT-PCR multiplex afin d’étudier de manière exhaustive le statut du locus TCRa dans cette même série de LAL-T. Nos résultats ont ainsi montré que ces nouveaux gènes NKL aboutissent aussi à une répression du TCRa par un mécanisme similaire à celui observé avec les oncoprotéines TLX. Les lymphomes anaplasiques (ALCL), qui sont caractérisés par une expression aberrante d’ALK, issue de la t(2;5), expriment des marqueurs d’activation T (CD30), cytotoxique (granzyme, perforin, TIA1) et des réarrangements clonaux du TCR, mais sans signalisation du TCR/CD3. Le stade du développement lymphoïde T où est initié la lymphomagenèse est inconnu, il est possible que cette translocation se produise avant l’expulsion thymique. Pour étudier cette hypothèse, nous avons analysé l’ensemble des TCR (d,g,b,a) par PCR et CGH array dans une série d’ALCL humain et utilisé un modèle murin de lymphomagénèse T dans lequel NPM-ALK est exprimé à l’aide du promoteur de CD4. Nous avons croisé ce premier modèle avec des souris transgéniques RAG déficient et/ou en présence d’un transgène TCR (OT1), afin d’étudier le rôle du TCR dans le développement tumoral. Le modèle de lymphomagenèse identifié est basé sur une expression de NPM-ALK dès les stades précoces de la différenciation thymique, lorsque le transcrit de fusion peut remplacer le TCRb, et lors de l’expansion des thymocytes corticaux au niveau de la « b-sélection ». Un TCR est cependant nécessaire pour la sortie du thymus, bien que perdu lors du développement des ALCL en périphérie. En conclusion, nous avons montré l’implication du TCR dans deux modèles d’oncogenèse. (...) / T cells mature in the thymus through a highly regulated process mediated by intrinsic factors (e.g. transcription factors) and extrinsic factors (e.g. cytokines or stromal cells). The acquisition of T lymphoid commitment during thymopoiesis, originating from a bone marrow precursor, is carried out through successive stages defined by the expression of various surface molecules and the precisely ordered TCR gene rearrangements; TCRd being the first to occur, followed by the TCRg and TCRb, and finally TCRa. TCR rearrangements are also highly coordinated in T acute lymphoblastic leukemia (T-ALL) despite the successive accumulation of oncogenic events. It is thus possible to define three immunogenetic subgroups of T-ALL; (I) the immature forms that do not express cytoplasmic TCRb, (ii) mature T-ALL which express a surface TCR and finally (iii) intermediate T-ALL, termed preab, which express intracytoplasmic TCRb without membrane expression of a TCR ab or gd Complex. In the latter subgroup, classically termed cortical T-ALL, two oncogenic transcription factors belonging to the NKL family of homeobox genes, TLX1 and TLX3, are commonly deregulated. We have previously demonstrated the direct role of TLX oncoproteins in the process of maturation arrest through their interaction with the ETS1 transcription factor, which blocks expression and rearrangements of TCRa. Not all cortical T-ALL cortical overexpress TLX1 nor TLX3, however, suggesting that other NKL family genes might be involved in the maturation arrest. We therefore, conducted a transcriptional analysis of all 46 NKL family genes in a large series of T-ALL and compared the results with those obtained in sorted human thymic subpopulations. We identified 10 ‘ectopic’ deregulated genes in T-ALL, including 6 genes whose deregulation was previously unknown in this leukemia. By combining high resolution CGH array, allelic of TCRa locus dosage and a novel TCRa RT-PCR multiplex, we show that these deregulated NKL genes also lead to inhibition of TCRa rearrangement, similar to that observed with TLX. These date demonstrate that homeobox inhibition of TCRa rearrangement is likely to explain the maturation arrest in the majority of cortical T-ALL, the commonest and most emblematic subgroup in this leukemia. Anaplastic lymphoma (ALCL), which are characterized by t(2;5) driven aberrant expression of ALK, express T activation markers (CD30), cytotoxic (granzyme, perforin, TIA1), and clonal TCR rearrangements in the intriguing absence of TCR/CD3 signaling. It is not clear at what stage of development ALCL lymphomagenesis is initiated, but as the expression of NPM is ubiquitous, it is possible that this translocation occurs before thymic egress. To investigate this, we analyzed all TCR(a,b,g,d) by PCR and CGH array in a series of human ALCL and compared these results with a T lymphomagenesis murine model in which NPM-ALK is regulated by the CD4 promoter. We crossed this first model with RAG deficient transgenic mice in the presence or not of a TCR transgene (OT1), to study the role of the TCR in tumor development. NPM-ALK expression from the earliest stages of thymic differentiation allow the fusion transcript to replace TCRb during the cortical thymic cellular expansion process known as "beta-selection". A TCR is, however, necessary for thymus egress, but is subsequently lost during the development of ALCL in the periphery, suggesting that the coexistence of TCR and NPM-ALK signaling is not compatible with lymphomagenesis and that the TCR may act as a tumor suppressor gene. In conclusion, we have delineated the involvement of TCRa in two models of oncogenesis. In T-ALL, NKL oncoproteins NKL prevent TCRa rearrangements and block cells at the highly proliferative TCRb-selection cortical thymic stage. In ALCL, a functional TCR appears to act as a tumor suppressor gene. Both models pave the way to differentiation therapy via TCR modulation.
8

Apport de l'analyse des réarrangements du TCR dans l'oncogenèse et l'ontogénie T / Contribution of TCR rearrangements analysis in oncogenesis and ontogeny T

Villarese, Patrick 01 October 2015 (has links)
Les cellules T maturent dans le thymus lors d’un processus très régulé par l’intermédiaire de facteurs intrinsèques, comme des facteurs de transcription, et des facteurs extrinsèques (par exemple des cytokines des cellules stromales). L’acquisition du potentiel T au cours de la thymopoïèse, à partir d’un précurseur médullaire, se réalise grâce à des étapes successives définies par l’expression de molécules de surface et par les différents réarrangements des gènes du TCR qui sont ordonnés : le TCRd étant le premier à se produire, suivi par le TCRg et TCRb, pour finir par le TCRa. Les réarrangements du TCR restent également parfaitement ordonnancés dans les leucémies aigues lymphoblastiques T et ce malgré l’accumulation successive d’évènements oncogéniques. Il est ainsi possible de définir trois sous-groupes immunogénétiques de LAL-T ; (i) les formes immatures n’exprimant pas de TCRb cytoplasmique (ii) les LAL-T matures exprimant un TCR de surface et enfin (iii) les LAL-T intermédiaires, dites pré-ab, exprimant le TCRb en intracytoplasmique sans expression membranaire d’un hétérodimère ab ou gd. Dans ce dernier sous groupe de LAL-T de phénotype cortical, deux oncogènes à homéodomaines, TLX1 et TLX3, appartenant à la famille des gènes homéotiques orphelins NKL, sont souvent dérégulés. Nous avons précédemment mis en évidence le rôle direct des oncoprotéines TLX dans le processus de l’arrêt de maturation, grâce à leur interaction avec le facteur de transcription ETS1, bloquant l’expression et les réarrangements du TCRa. Néanmoins, une partie des LAL-T corticales ne surexprime ni TLX1 ni TLX3, posant la question de l’implication potentielle d’autres gènes de la famille NKL dans le blocage de maturation. Nous avons donc réalisé une analyse transcriptionnelle de l’ensemble des 46 gènes de la famille NKL dans une large série de LAL-T et comparé les résultats avec ceux obtenus dans des sous populations thymiques humaines triées. Nous avons ainsi identifié 10 gènes dérégulés de manière ectopique dans notre série de LAL-T, incluant 6 gènes dont la dérégulation était inconnue dans ce contexte. Par ailleurs, nous avons mis au point une approche complexe combinant une analyse en CGH-array haute résolution, le dosage allélique du locus TCRa et un système de RT-PCR multiplex afin d’étudier de manière exhaustive le statut du locus TCRa dans cette même série de LAL-T. Nos résultats ont ainsi montré que ces nouveaux gènes NKL aboutissent aussi à une répression du TCRa par un mécanisme similaire à celui observé avec les oncoprotéines TLX. Les lymphomes anaplasiques (ALCL), qui sont caractérisés par une expression aberrante d’ALK, issue de la t(2;5), expriment des marqueurs d’activation T (CD30), cytotoxique (granzyme, perforin, TIA1) et des réarrangements clonaux du TCR, mais sans signalisation du TCR/CD3. Le stade du développement lymphoïde T où est initié la lymphomagenèse est inconnu, il est possible que cette translocation se produise avant l’expulsion thymique. Pour étudier cette hypothèse, nous avons analysé l’ensemble des TCR (d,g,b,a) par PCR et CGH array dans une série d’ALCL humain et utilisé un modèle murin de lymphomagénèse T dans lequel NPM-ALK est exprimé à l’aide du promoteur de CD4. Nous avons croisé ce premier modèle avec des souris transgéniques RAG déficient et/ou en présence d’un transgène TCR (OT1), afin d’étudier le rôle du TCR dans le développement tumoral. Le modèle de lymphomagenèse identifié est basé sur une expression de NPM-ALK dès les stades précoces de la différenciation thymique, lorsque le transcrit de fusion peut remplacer le TCRb, et lors de l’expansion des thymocytes corticaux au niveau de la « b-sélection ». Un TCR est cependant nécessaire pour la sortie du thymus, bien que perdu lors du développement des ALCL en périphérie. En conclusion, nous avons montré l’implication du TCR dans deux modèles d’oncogenèse. (...) / T cells mature in the thymus through a highly regulated process mediated by intrinsic factors (e.g. transcription factors) and extrinsic factors (e.g. cytokines or stromal cells). The acquisition of T lymphoid commitment during thymopoiesis, originating from a bone marrow precursor, is carried out through successive stages defined by the expression of various surface molecules and the precisely ordered TCR gene rearrangements; TCRd being the first to occur, followed by the TCRg and TCRb, and finally TCRa. TCR rearrangements are also highly coordinated in T acute lymphoblastic leukemia (T-ALL) despite the successive accumulation of oncogenic events. It is thus possible to define three immunogenetic subgroups of T-ALL; (I) the immature forms that do not express cytoplasmic TCRb, (ii) mature T-ALL which express a surface TCR and finally (iii) intermediate T-ALL, termed preab, which express intracytoplasmic TCRb without membrane expression of a TCR ab or gd Complex. In the latter subgroup, classically termed cortical T-ALL, two oncogenic transcription factors belonging to the NKL family of homeobox genes, TLX1 and TLX3, are commonly deregulated. We have previously demonstrated the direct role of TLX oncoproteins in the process of maturation arrest through their interaction with the ETS1 transcription factor, which blocks expression and rearrangements of TCRa. Not all cortical T-ALL cortical overexpress TLX1 nor TLX3, however, suggesting that other NKL family genes might be involved in the maturation arrest. We therefore, conducted a transcriptional analysis of all 46 NKL family genes in a large series of T-ALL and compared the results with those obtained in sorted human thymic subpopulations. We identified 10 ‘ectopic’ deregulated genes in T-ALL, including 6 genes whose deregulation was previously unknown in this leukemia. By combining high resolution CGH array, allelic of TCRa locus dosage and a novel TCRa RT-PCR multiplex, we show that these deregulated NKL genes also lead to inhibition of TCRa rearrangement, similar to that observed with TLX. These date demonstrate that homeobox inhibition of TCRa rearrangement is likely to explain the maturation arrest in the majority of cortical T-ALL, the commonest and most emblematic subgroup in this leukemia. Anaplastic lymphoma (ALCL), which are characterized by t(2;5) driven aberrant expression of ALK, express T activation markers (CD30), cytotoxic (granzyme, perforin, TIA1), and clonal TCR rearrangements in the intriguing absence of TCR/CD3 signaling. It is not clear at what stage of development ALCL lymphomagenesis is initiated, but as the expression of NPM is ubiquitous, it is possible that this translocation occurs before thymic egress. To investigate this, we analyzed all TCR(a,b,g,d) by PCR and CGH array in a series of human ALCL and compared these results with a T lymphomagenesis murine model in which NPM-ALK is regulated by the CD4 promoter. We crossed this first model with RAG deficient transgenic mice in the presence or not of a TCR transgene (OT1), to study the role of the TCR in tumor development. NPM-ALK expression from the earliest stages of thymic differentiation allow the fusion transcript to replace TCRb during the cortical thymic cellular expansion process known as "beta-selection". A TCR is, however, necessary for thymus egress, but is subsequently lost during the development of ALCL in the periphery, suggesting that the coexistence of TCR and NPM-ALK signaling is not compatible with lymphomagenesis and that the TCR may act as a tumor suppressor gene. In conclusion, we have delineated the involvement of TCRa in two models of oncogenesis. In T-ALL, NKL oncoproteins NKL prevent TCRa rearrangements and block cells at the highly proliferative TCRb-selection cortical thymic stage. In ALCL, a functional TCR appears to act as a tumor suppressor gene. Both models pave the way to differentiation therapy via TCR modulation.
9

Conception, synthèses et évaluations biologiques d’inhibiteurs à double cible : ALK et la restriction calorique / Design, synthesis and biological evaluations of inhibitors double target : ALK and caloric restriction

D'Attoma, Joseph 20 November 2013 (has links)
Les lymphomes à grandes cellules anaplasiques ou ALCL (Anaplastic Large-Cell Lymphoma) sont des cancers appartenant à la famille des lymphomes de type non-Hodgkin. La majorité des ALCL est issue d'une translocation t(2;5)(p23;q35) donnant lieu à la formation d'une protéine de fusion appelée NPM-ALK. A ce jour, peu d'inhibiteurs présentent de bonnes activités contre cette protéine chimérique. L'obésité représente un problème socio-médical d'envergure, à la fois pour ses effets directs et indirects ; le surpoids étant un facteur primaire dans de nombreuses maladies, tout particulièrement les diabètes, les accidents cardiovasculaires, le cancer, etc. A contrario, une restriction calorique (RC) est associée à des bénéfices importants en terme de santé. A l'issue de plusieurs criblages, un inhibiteur au motif 2-acylaminothiazole a montré une activité anticancéreuse sur ALK mais également la faculté de mimer la restriction calorique chez C. Elegans. Par conséquent, les travaux de recherche réalisés lors de cette thèse ont concerné la synthèse d'inhibiteurs comportant le squelette 2-acylaminothiazole. Les chromatographies d'affinité effectuées sur deux de nos inhibiteurs ont permis l'identification de cibles principales potentielles dans le cadre de la restriction calorique et des cibles secondaires possibles pour NPM-ALK. Ensuite, la présence d'un atome de brome sur le cycle aromatique a mené à la formation de liaisons C(sp2)-C(sp2), C(sp2)-C(sp) et C(sp2)- N, en utilisant les couplages catalysés par le palladium. Les différentes méthodes de modulation chimique ont conduit à mettre en place une librairie de 134 molécules. Certains d'entres eux et plus précisément ceux possédant un atome de silicium ont démontré une très bonne activité contre ALK et son mutant L1196M. Enfin, des résultats préliminaires ont également été obtenus sur le sujet de la restriction calorique avec quatre composés montrant une réduction du taux de lipides chez C. Elegans / Anaplastic Large-Cell Lymphoma (ALCL) is a type of cancer belonging to the non-Hodgkin family. The majority of ALCL arises from a translocation t(2;5) (p23;35) which leads to the formation of a fusion protein called NPM-ALK. Nowadays, few molecules are known to inhibit the activity of this chimeric protein. Obesity is a major socio-medical problem, for both direct and indirect effects, overweight is a primary factor in many diseases, especially diabetes, cardiovascular events, cancer, etc... In contrast, caloric restriction (CR) is associated with significant benefits in terms of health. After several screenings, one inhibitor based on a 2-acylaminothiazol scaffold showed anticancer activity on the protein ALK but also the ability to mimic caloric restriction in C. Elegans. The aim of this PhD was to develop the synthesis of new inhibitors including the 2-acylaminothiazol scaffold. The affinity chromatography performed on two of our inhibitors was used to identify potential major cellular targets in the process of caloric restriction and secondary cellular targets for NPM-ALK. Then, the presence of a bromo group on the aromatic ring allowed the formation of C(sp2)-C(sp2), C(sp2)- C(sp) and C(sp2)-N bonds, using palladium-catalyzed couplings. The different chemical methodologies afforded the synthesis of a library of 134 molecules. Some of them especially with a silicon atom demonstrated very good inhibitory activity and high selectivity against NPM-ALK and L1196M-NPM-ALK. Finally, preliminary results were also obtained on the subject of calorie restriction with four compounds showing a reduction of lipids in C. Elegans

Page generated in 0.0195 seconds