• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réarrangements chromosomiques chez l'homme : ségrégation des chromosomes à la méiose et procréation / Chromosomal rearrangements in males : meiotic chromosome segregation and reproduction

Rouen, Alexandre 04 May 2016 (has links)
Les translocations chromosomiques et les autres types de réarrangements peuvent, bien qu'associées à un phénotype normal, mener à la transmission d'un contenu génétique déséquilibré à la descendance. Il n'est pas possible de distinguer les chromosomes équilibrés des déséquilibrés, ce qui empêche toute sélection dans le cadre d'une fécondation in vitro (FIV). Nous avons ainsi mené une série de projets de recherche dont le but a été de mettre en évidence des caractéristiques spécifiques de ces spermatozoïdes déséquilibrés, afin de pouvoir les distinguer au cours d'une FIV. Nous avons montré que les spermatozoïdes déséquilibrés présentaient des taux de fragmentation de l'ADN plus élevés, étaient moins denses, et avaient un volume nucléaire supérieur. Ces constatations ont mené au développement d'une procédure de sélection des spermatozoïdes équilibrés chez les porteurs de réarrangements chromosomiques. En utilisant le hypo-osmotic swelling test (HOST), nous avons montré qu'une morphologie flagellaire spécifique était associée à un contenu chromosomique équilibré. Nous proposons d'utiliser cette procédure de sélection dans le cadre d'une ICSI, afin d'améliorer le pronostic reproductif chez les couples concernés. Nous proposons également d'évaluer la proportion de spermatozoïdes déséquilibrés chez chaque patient porteur de réarrangement chromosomique. En effet, bien que ce taux varie d'un patient à l'autre, il est stable dans le temps pour un patient donné. Il est de plus un élément déterminant dans le choix d'une des options de prise en charge : reproduction naturelle, insémination artificielle avec test de migration survie (TMS), ICSI avec sélection par HOST, et diagnostic préimplantatoire (DPI). / Chromosomal translocations and other balanced rearrangements, although usually associated with a normal phenotype, can lead to the transmission of an abnormal unbalanced genetic content to the offspring. Balanced and unbalanced spermatozoa are indistinguishable, making it impossible to select them prior to in vitro fertilization. We conducted a series of research projects aimed at evidencing specific characterics for unbalanced spermatozoa, in a way to ultimately distinguish them from balanced ones during in vitro fertilization. We showed that unbalanced spermatozoa had higher DNA fragmentation rates, were less dense, and that their nuclear volume was higher. This led to developing a selection procedure for balanced spermatozoa in rearrangement carriers. Using the hypo-osmotic swelling test (HOST), we showed that a specific flagellar morphology was associated with balanced chromosomal status. We suggest using this procedure prior to ICSI in order to improve the reproductive prognosis in those patients. We also suggest evaluating the proportion of unbalanced spermatozoa in every patient with a chromosomal rearrangement. Although this proportion varies among patients, it is stable over time for a given patient. We believe this is a decisive element in choosing between the different available options : natural conception, artificial insemination with discontinuous gradient centrifugation, ICSI with HOST-based selection, and pre-implantation genetic diagnosis (PGD).
2

Conséquences cellulaires de la formation de translocations chromosomiques : le modèle du lymphome anaplasique à grandes cellules (ALCL) / Cellular Consequences Of Chromosomal Translocation Formation : Model Of The Anaplastic Large Cell Lymphoma (ALCL)

Piganeau, Marion 12 April 2016 (has links)
Les translocations chromosomiques sont des événements cellulaires rares signatures de nombreux cancers, pouvant mener à l’expression de nouveaux gènes de fusion oncogènes ou à la dérégulation d’un oncogène existant. Cependant, le lien direct entre la formation de translocations et la tumorigenèse n’est pas toujours bien établi. Jusqu’à présent, la modélisation de translocations se limitait principalement à la surexpression du gène de fusion créé. Pour mieux comprendre leur contribution à l’oncogenèse, nous avons développé une nouvelle méthode pour induire des translocations oncogéniques de novo, afin de recréer plus fidèlement les premières étapes de la transformation cellulaire.Pour cela, nous nous appuyons sur la technologie des nucléases artificielles telles que les nucléases à doigt de zinc, les TALEN (TALE Nucleases) et le système CRISPR/Cas9 (Clustered Regularly Interspaced Palindromic Repeats) pour générer des cassures ciblées de l’ADN et induire la formation de remaniements chromosomiques. Nous nous sommes particulièrement concentrés sur l’induction de la translocation modèle t(2;5)(p23;q32) et du gène de fusion NPM-ALK, associés au Lymphome Anaplasique à Grandes Cellules (ALCL), dans divers modèles cellulaires. Nous avons ainsi mis en évidence des propriétés oncogéniques du gène de fusion NPM-ALK exprimé sous son promoteur endogène suite à la formation du réarrangement chromosomique. Cependant, l’induction de la translocation dans des lymphocytes T primaires suggère que cet événement ne suffit pas à lui seul à initier l’oncogenèse, et nécessite probablement un contexte génétique ou épigénétique favorable. / Chromosomal translocations are signatures of numerous cancers and lead to expression of fusion genes that act as oncogenes. However, the wealth of genomic aberrations found in cancer makes it challenging to assign a specific phenotypic change to a specific aberration. We set out to use genome editing with Zinc Finger Nucleases (ZFN), Tale Effector Nucleases (TALEN), and the CRISPR/Cas9 (Clustered Regularly Interspaced Palindromic Repeats) to induce de novo specific chromosomal translocations in human cells, thus generating new models to interrogate the contribution of tumor-related translocations in first steps of oncogenesis. We specially focused on Anaplastic Large Cell Lymphoma (ALCL) t(2;5) translocation and NPM-ALK consequent fusion gene. For the first time, we highlighted oncogenic properties for NPM-ALK fusion expressed under endogenous promoter. However, translocation induction in primary T cells suggests that t(2;5) is not sufficient to initiate ALCL oncogenesis, and likely requires favourable genetic or epigenetic or context.
3

Etudes des translocations chromosomiques en utilisant les méthodes d'édition du génome : des mécanismes moléculaires à l’oncogenèse / Cancer Translocations Induction Using Genome Editing : from Molecular Mechanisms to Oncogenesis

Babin, Loélia 27 September 2019 (has links)
Les translocations chromosomiques sont associées à un grand nombre de cancers. Les translocations chromosomiques sont impliquées dans la tumorigenèse par différents mécanismes : elles conduisent soit à une dérégulation d’un oncogène, soit à la formation d’un nouvel oncogène de fusion. Cependant, le lien direct entre l'apparition d'une translocation chromosomique et la formation d'une tumeur n'est pas totalement établi. Par exemple, plusieurs translocations associées au cancer ont été détectées dans le sang d’individus sains voire dans le sang de cordon des bébés avec une prévalence bien supérieure à celle de la maladie. Ceci suggère que la seule formation de la translocation ne suffit pas toujours à induire l’oncogenèse. La plupart des travaux de recherche antérieurs reposaient sur la surexpression de la protéine de fusion, oncogène supposé. Ces approches présentent de nombreuses limites, la translocation chromosomique est alors absente de même que le contexte chromosomique natif du gène de fusion (promoteur endogène, statut de la chromatine, etc.) ou les éventuels effets d’haplo-insuffisance qui ne sont pas récapitulés. La molécule d’ADN étant organisée de manière non aléatoire dans le noyau, les réarrangements chromosomiques sont également susceptibles d’affecter le statut épigénétique, la réplication et la transcription du chromosome dérivatif entier, en plus des segments d’ADN nouvellement juxtaposés. Or la technologie CRISPR/Cas9, permet de reproduire la translocation chromosomique in situ, après avoir induit deux cassures double-brin simultanées. Ce travail de thèse a porté spécifiquement sur la translocation t(2,5) (p23, q35) qui induit l’expression de la protéine de fusion NPM1-ALK fréquemment rencontrée dans le lymphome anaplasique à grandes cellules (ALCL). Nous avons reproduit la t(2,5) à la fois dans des lignées cellulaires mais aussi dans des cellules T primaires à la fin de ma thèse. Nous avons pu montrer des modifications significatives du timing de réplication des cellules qui portent la translocation en comparaison des cellules isogéniques de départ (par la méthode du Répli-seq) pouvant avoir un impact sur l’homéostasie des cellules tumorales. En parallèle, nous avons mis en évidence la formation d'ARN circulaires de fusion spécifiques, exprimés à partir du gène de fusion, spécifiques des lignées tumorales. Ces ARN circulaires pourraient donner naissance à de nouveaux biomarqueurs diagnostic/pronostic dans le futur. Ces travaux permettront de mieux comprendre les conséquences des translocations chromosomiques oncogéniques dans les cellules humaines et pourraient mener vers de nouvelles orientations thérapeutiques à l’avenir. / Chromosomal translocations are associated with a wide range of cancers. These chromosomal rearrangements are implicated in tumorigenesis by different mechanisms: either they lead to oncogene upregulation or tumor suppressor downregulation. However, the direct link between the appearance of one chromosomal translocation and tumor formation is not always clear. For example, several cancer translocations have been found in PBMCs or in cord blood cells from healthy individuals, suggesting that translocation formation alone is not always sufficient to drive oncogenesis. Most of previous research works on cancer translocation relied on studies using overexpression of the fusion protein. These approaches do not reproduce the chromosome arm translocation nor the chromosomal context of the fusion gene (endogenous promotor, chromatin status etc…) or do not recapitulate a potential haplo-insufficiency of the translocated cells. Because the DNA molecule is organized non-randomly in the nucleus, chromosomal rearrangements are also likely to impact the epigenetic, replication and transcriptional status of the whole rearranged chromosome in addition to the newly juxtaposed gene segments. Using CRISPR/Cas9 technology, we can recapitulate chromosomal translocation in situ, after inducing 2 concurrent double-strand breaks. In this work, we focus on t(2,5)(p23,q35) leading to NPM1-ALK fusion protein frequently found in Anaplasic Large Cell Lymphoma (ALCL). We could recapitulate t(2;5) in cell lines but more importantly in human primary T cells from healthy donors. We showed significant modifications on Replication Timing in model cell lines compare to isogenic non-translocated cells (using Repli-seq analysis). Importantly, these changes might have a direct impact on tumor cell homeostasis. In parallel, we also highlighted the formation of specific fusion circular RNAs expressed from the fusion gene also found in tumor cells. These circular RNAs could give rise to new diagnostic/prognostic biomarkers in the future. This work will lead to a better understanding of the consequences of cancer translocation in human cells and could give new directions for therapeutics in future.
4

Caractérisation cytogénétique et moléculaire des translocations chromosomiques dans la phase blastique de la leucémie myéloïde chronique

Hazourli, Sawcène 01 August 2012 (has links)
La leucémie myéloïde chronique (LMC) est un modèle d’évolution tumorale dans les cancers humains. Le processus d’évolution de la LMC de la phase chronique (PC) à la phase blastique (PB) est caractérisé par un arrêt de différenciation et l’acquisition de la capacité d’autorenouvellement incontrôlé d’une cellule souche ou d’un progéniteur hématopoïétique. La LMC en PB est associée à la présence d’anomalies génétiques additionnelles à la fusion BCR-ABL1 qui résulte de la translocation chromosomique t(9;22). Contrairement aux patients en PC, les patients en PB de la LMC n’obtiennent pas une réponse moléculaire complète à long terme avec 1’Imatinib mesylate, un inhibiteur de la tyrosine kinase (ITK) BCR-ABL1. De plus, les ITKs de deuxième et troisième générations sont moins efficaces en PB de la LMC lorsque les cellules leucémiques ont acquis une résistance au traitement indépendante des mutations de BCR-ABL1. Les mécanismes moléculaires des voies de signalisation impliquées dans la progression de la LMC en PB ne sont pas entièrement élucidés. Le but de notre travail est de caractériser de nouvelles anomalies génétiques dans la PB de la LMC. Nous avons identifié en cytogénétique, quatre nouvelles translocations chromosomiques : t(1;21)(p36;q22), t(7;17)(p15;q22), t(8;17)(q11;q22) et t(2;12)(q31;p13) dans les cellules leucémiques de patients en PB de la LMC résistants au traitement. En utilisant des techniques d'hybridation in situ en fluorescence, de RT-PCR et de séquençage, nous avons délimité les régions à investiguer au niveau des points de cassure et identifié un réarrangement de plusieurs gènes codant pour des facteurs de transcription importants lors de l’hématopoïèse tels que RUNX1, ETV6, PRDM16 et HOXA. L’altération de ces gènes pourrait expliquer l’arrêt de différenciation et/ou l’acquisition de la capacité d’autorenouvellement caractéristiques de la LMC en PB. Nous avons identifié les fusions RUNX1-PRDM16, MSI2-HOXA, MSI2-SOX17 et ETV6-HOXD11, respectivement associées aux translocations chromosomiques t(1;21), t(7;17), t(8;17) et t(2;12). Ces fusions génèrent différents transcrits alternatifs qui maintiennent et altèrent le cadre ouvert de lecture. L’analyse des séquences des transcrits chimériques identifiés dans ce projet, incluant RUNX1-PRDM16, MSI2-HOXA9, MSI2-HOXA10, MSI2-HOXA11 et ETV6-HOXD11, nous a permis de prédire les domaines fonctionnels potentiellement présents au niveau des protéines chimériques prédites. Les transcrits de fusion qui respectent le cadre ouvert de lecture peuvent générer des domaines fonctionnels des deux partenaires. C’est le cas des deux transcrits identifiés pour la fusion RUNX1-PRDM16 où le domaine de liaison à l’ADN RHD (Runt homology domain) de RUNX1 est fusionné avec la quasi-totalité des domaines de PRDM16. Les transcrits de fusion qui ne respectent pas le cadre ouvert de lecture donnent des formes tronquées des transcrits RUNX1, MSI2 et ETV6. La juxtaposition des régions promotrices de ces derniers en 5’ de leurs partenaires entraîne l’activation de la forme courte oncogénique de PRDM16 dans la t(1;21) ou de différents gènes HOXA/D dans les t(7;17) et t(2;12), ainsi que l’expression aberrante d’un nouveau transcrit alternatif de SOX17 dans la t(8;17). Notre étude nous a permis d’identifier de nouveaux gènes de fusion et/ou une activation de gènes qui pourraient coopérer avec la fusion BCR-ABL1 dans la progression de la LMC et être impliqués dans la résistance au traitement de la LMC en phase avancée. La caractérisation des événements génétiques associés à la transformation blastique de la LMC est essentielle pour l’investigation des voies moléculaires impliquées dans cette phase de la maladie. Investiguer la résistance au traitement de ces patients pourrait aussi contribuer à identifier de nouvelles cibles thérapeutiques dans cette leucémie. / Chronic myeloid leukemia (CML) is a model of tumor evolution in human cancer. The evolution process of CML from the chronic phase (CP) to the blastic phase (BP) is characterized by a blockade of differentiation and acquisition of uncontrolled self-renewal capacity by hematopoietic stem or progenitor cells. CML-BP is associated with the presence of other genetic abnormalities in addition to the BCR-ABL1 fusion which results from chromosomal translocation t(9;22). Unlike patients in the CP, patients with CML-BP do not achieve a long-term complete molecular response to Imatinib mesylate, an inhibitor targeting the BCR-ABL1 tyrosine kinase (TK). Moreover, second and third generation TK inhibitors are less effective in CML-BP when leukemic cells have acquired a therapeutic resistance independent of BCR-ABL1 mutations. The molecular mechanisms of the signaling pathways responsible for CML progression from CP to BP are poorly understood. The aim of our project is to characterize novel genetic alterations in the BP of CML. We have identified by cytogenetics, four novel chromosomal translocations: t(1;21)(p36;q22), t(7;17)(p15;q22), t(8;17)(q11;q22) and t(2;12)(q31;p13) in leukemic cells of patients with CML-BP resistant to therapy. Using fluorescence in situ hybridization, RT-PCR and sequencing techniques, we have mapped chromosomal translocation breakpoints and identified rearranged genes encoding transcription factors which are key regulators of hematopoiesis, such as RUNX1, ETV6, PRDM16 and HOXA. The disruption of these genes could explain the differentiation blockade and/or uncontrolled self-renewal associated with the CML-BP. We identified RUNX1-PRDM16, MSI2-HOXA, MSI2-SOX17 and ETV6-HOXD11 fusions created by chromosomal translocations t(1;21), t(7;17), t(8;17) and t(2;12) respectively. These fusions generate different alternative transcripts that both maintain and alter the open reading frame. Sequence analysis of chimeric transcripts identified in this project, including RUNX1-PRDM16, MSI2-HOXA9, MSI2-HOXA10, MSI2-HOXA11 and ETV6-HOXD11, allowed us to predict potential functional domains present in putative chimeric proteins. In-frame fusion transcripts can generate functional domains from both fusion partners. For example, in two RUNX1-PRDM16 transcripts, the RUNX1 DNA binding domain RHD (Runt homology domain) is fused to the majority of PRDM16 domains. Out-of-frame fusion transcripts resulted in truncated forms of RUNX1, MSI2 and ETV6. The juxtaposition of promoter regions of these genes to the 5’ part of their partners resulted in the activation of the oncogenic short form of PRDM16 in the t(1;21) or of different HOXA/D genes in t(7;17) and t(2;12), and in the aberrant expression of a novel alternative SOX17 transcript in the t(8;17). Our study allowed us to identify novel fusion genes and/or activation of genes that potentially cooperate with BCR-ABL1 fusion in the progression of CML and contribute to treatment resistance of this disease. The characterization of genetic events related to the blastic transformation of CML is an important step in the investigation of molecular pathways involved in this stage of the disease. Understanding treatment resistance of these patients might help to identify new therapeutic targets in this leukemia.
5

Caractérisation cytogénétique et moléculaire des translocations chromosomiques dans la phase blastique de la leucémie myéloïde chronique

Hazourli, Sawcène 01 August 2012 (has links)
La leucémie myéloïde chronique (LMC) est un modèle d’évolution tumorale dans les cancers humains. Le processus d’évolution de la LMC de la phase chronique (PC) à la phase blastique (PB) est caractérisé par un arrêt de différenciation et l’acquisition de la capacité d’autorenouvellement incontrôlé d’une cellule souche ou d’un progéniteur hématopoïétique. La LMC en PB est associée à la présence d’anomalies génétiques additionnelles à la fusion BCR-ABL1 qui résulte de la translocation chromosomique t(9;22). Contrairement aux patients en PC, les patients en PB de la LMC n’obtiennent pas une réponse moléculaire complète à long terme avec 1’Imatinib mesylate, un inhibiteur de la tyrosine kinase (ITK) BCR-ABL1. De plus, les ITKs de deuxième et troisième générations sont moins efficaces en PB de la LMC lorsque les cellules leucémiques ont acquis une résistance au traitement indépendante des mutations de BCR-ABL1. Les mécanismes moléculaires des voies de signalisation impliquées dans la progression de la LMC en PB ne sont pas entièrement élucidés. Le but de notre travail est de caractériser de nouvelles anomalies génétiques dans la PB de la LMC. Nous avons identifié en cytogénétique, quatre nouvelles translocations chromosomiques : t(1;21)(p36;q22), t(7;17)(p15;q22), t(8;17)(q11;q22) et t(2;12)(q31;p13) dans les cellules leucémiques de patients en PB de la LMC résistants au traitement. En utilisant des techniques d'hybridation in situ en fluorescence, de RT-PCR et de séquençage, nous avons délimité les régions à investiguer au niveau des points de cassure et identifié un réarrangement de plusieurs gènes codant pour des facteurs de transcription importants lors de l’hématopoïèse tels que RUNX1, ETV6, PRDM16 et HOXA. L’altération de ces gènes pourrait expliquer l’arrêt de différenciation et/ou l’acquisition de la capacité d’autorenouvellement caractéristiques de la LMC en PB. Nous avons identifié les fusions RUNX1-PRDM16, MSI2-HOXA, MSI2-SOX17 et ETV6-HOXD11, respectivement associées aux translocations chromosomiques t(1;21), t(7;17), t(8;17) et t(2;12). Ces fusions génèrent différents transcrits alternatifs qui maintiennent et altèrent le cadre ouvert de lecture. L’analyse des séquences des transcrits chimériques identifiés dans ce projet, incluant RUNX1-PRDM16, MSI2-HOXA9, MSI2-HOXA10, MSI2-HOXA11 et ETV6-HOXD11, nous a permis de prédire les domaines fonctionnels potentiellement présents au niveau des protéines chimériques prédites. Les transcrits de fusion qui respectent le cadre ouvert de lecture peuvent générer des domaines fonctionnels des deux partenaires. C’est le cas des deux transcrits identifiés pour la fusion RUNX1-PRDM16 où le domaine de liaison à l’ADN RHD (Runt homology domain) de RUNX1 est fusionné avec la quasi-totalité des domaines de PRDM16. Les transcrits de fusion qui ne respectent pas le cadre ouvert de lecture donnent des formes tronquées des transcrits RUNX1, MSI2 et ETV6. La juxtaposition des régions promotrices de ces derniers en 5’ de leurs partenaires entraîne l’activation de la forme courte oncogénique de PRDM16 dans la t(1;21) ou de différents gènes HOXA/D dans les t(7;17) et t(2;12), ainsi que l’expression aberrante d’un nouveau transcrit alternatif de SOX17 dans la t(8;17). Notre étude nous a permis d’identifier de nouveaux gènes de fusion et/ou une activation de gènes qui pourraient coopérer avec la fusion BCR-ABL1 dans la progression de la LMC et être impliqués dans la résistance au traitement de la LMC en phase avancée. La caractérisation des événements génétiques associés à la transformation blastique de la LMC est essentielle pour l’investigation des voies moléculaires impliquées dans cette phase de la maladie. Investiguer la résistance au traitement de ces patients pourrait aussi contribuer à identifier de nouvelles cibles thérapeutiques dans cette leucémie. / Chronic myeloid leukemia (CML) is a model of tumor evolution in human cancer. The evolution process of CML from the chronic phase (CP) to the blastic phase (BP) is characterized by a blockade of differentiation and acquisition of uncontrolled self-renewal capacity by hematopoietic stem or progenitor cells. CML-BP is associated with the presence of other genetic abnormalities in addition to the BCR-ABL1 fusion which results from chromosomal translocation t(9;22). Unlike patients in the CP, patients with CML-BP do not achieve a long-term complete molecular response to Imatinib mesylate, an inhibitor targeting the BCR-ABL1 tyrosine kinase (TK). Moreover, second and third generation TK inhibitors are less effective in CML-BP when leukemic cells have acquired a therapeutic resistance independent of BCR-ABL1 mutations. The molecular mechanisms of the signaling pathways responsible for CML progression from CP to BP are poorly understood. The aim of our project is to characterize novel genetic alterations in the BP of CML. We have identified by cytogenetics, four novel chromosomal translocations: t(1;21)(p36;q22), t(7;17)(p15;q22), t(8;17)(q11;q22) and t(2;12)(q31;p13) in leukemic cells of patients with CML-BP resistant to therapy. Using fluorescence in situ hybridization, RT-PCR and sequencing techniques, we have mapped chromosomal translocation breakpoints and identified rearranged genes encoding transcription factors which are key regulators of hematopoiesis, such as RUNX1, ETV6, PRDM16 and HOXA. The disruption of these genes could explain the differentiation blockade and/or uncontrolled self-renewal associated with the CML-BP. We identified RUNX1-PRDM16, MSI2-HOXA, MSI2-SOX17 and ETV6-HOXD11 fusions created by chromosomal translocations t(1;21), t(7;17), t(8;17) and t(2;12) respectively. These fusions generate different alternative transcripts that both maintain and alter the open reading frame. Sequence analysis of chimeric transcripts identified in this project, including RUNX1-PRDM16, MSI2-HOXA9, MSI2-HOXA10, MSI2-HOXA11 and ETV6-HOXD11, allowed us to predict potential functional domains present in putative chimeric proteins. In-frame fusion transcripts can generate functional domains from both fusion partners. For example, in two RUNX1-PRDM16 transcripts, the RUNX1 DNA binding domain RHD (Runt homology domain) is fused to the majority of PRDM16 domains. Out-of-frame fusion transcripts resulted in truncated forms of RUNX1, MSI2 and ETV6. The juxtaposition of promoter regions of these genes to the 5’ part of their partners resulted in the activation of the oncogenic short form of PRDM16 in the t(1;21) or of different HOXA/D genes in t(7;17) and t(2;12), and in the aberrant expression of a novel alternative SOX17 transcript in the t(8;17). Our study allowed us to identify novel fusion genes and/or activation of genes that potentially cooperate with BCR-ABL1 fusion in the progression of CML and contribute to treatment resistance of this disease. The characterization of genetic events related to the blastic transformation of CML is an important step in the investigation of molecular pathways involved in this stage of the disease. Understanding treatment resistance of these patients might help to identify new therapeutic targets in this leukemia.
6

Caractérisation fonctionnelle d'une nouvelle translocation t(3;5)(q21;q31), ciblant le gène du récepteur aux glucocorticoïde et un ARN non-codant, dans la leucémie aigüe à cellules plasmocytoides dendritiques / Functional characterisation of a novel t(3;5) translocation targeting the Glucocorticoïd receptor gene and a long non-coding RNA in plasmacytoïd dendritic cell acute leukaemia

Hoghoughi, Neda 19 December 2014 (has links)
La leucémie aiguë à cellules dendritiques plasmacytoïdes (BPDCN) fait partie des cancers incurables pour lesquels les mécanismes impliqués dans la pathogénèse restent inconnus. Dans ce travail, nous avons identifié le gène NR3C1 (5q31), qui code pour le récepteur des glucocorticoïdes (GCR), et un long ARN non-codant inter-génique (appelé ici lincRNA-3q), comme étant des cibles d'altération géniques ou de dérégulation transcriptionnelles dans les BPDCN. La translocation/délétion de NR3C1 est associée avec un temps de survie extrêmement court et des activités anormales du réseau de régulation des gènes GCR, EZH2 et FOXP3. Nous avons découvert que lincRNA-3q code pour une forme nucléaire d'ARN non-codant qui est activé de façon ectopique dans les BPDCN et les AML à haut risque. Dans les cancers myéloïdes, une déplétion de lincRNA-3q induit un arrêt du cycle cellulaire qui coïncide avec la suppression des signatures d'expression génique de E2F1/Rb et des gènes spécifiques aux cellules souches leucémiques. Nos résultats démontrent qu'une inhibition des protéines à bromodomaine BET supprime sélectivement l'expression lincRNA-3q, indiquant une stratégie thérapeutique potentielle pour contrer l'activité oncogénique de cet ARN non-codant. Ce travail défini, un nouveau cadre de recherche pour comprendre la pathogénèse et la résistance au traitement dans les BPDCN. / Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an incurable malignancy for which disease mechanisms are unknown. Here, we identify the NR3C1 gene (5q31), encoding the glucocorticoid receptor (GCR), and a long, intergenic, non-coding RNA gene (named here lincRNA-3q), respectively, as targets for genetic alteration or transcriptional deregulation in BPDCN. NR3C1 translocation/deletion was associated to critically short survival in BPDCN and to abnormal activity of GCR, EZH2, and FOXP3 gene regulatory networks. LincRNA-3q, was found to encode a nuclear, non- coding RNA that is ectopically activated in BPDCN and high-risk AML. Depletion of lincRNA-3q in myeloid cancer cells induced cell cycle arrest, coincident to suppression of E2F1/Rb and leukemia stem cell-specific gene expression signatures. BET bromodomain protein inhibition could selectively suppress lincRNA-3q indicating a treatment strategy for counteracting oncogenic activity of this non- coding RNA. Thus, this work defines a new framework for understanding disease pathogenesis and treatment resistance in BPDCN.

Page generated in 0.1587 seconds