• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 13
  • 13
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Mechanism Of Fragility Of The BCL2 And HOX11 Breakpoint Regions During t(14;18) And t(10;14) Chromosomal Translocations In Lymphoid Cancers

Nambiar, Mridula 05 1900 (has links) (PDF)
Haematological cancers like leukemia and lymphoma are characterized by genetic abnormalities, specifically chromosomal translocations. Analyses of the translocation breakpoint regions in patients have shown that some loci in the genome are more susceptible to breakage than others. However, very little is known about the mechanism of generation of many such chromosomal translocations. In the present study, we have attempted to understand the mechanism of fragility of three regions, which are prone to breaks during translocations in follicular lymphoma (FL) and T-cell leukemia. The t(14;18) translocation in FL is one of the most common chromosomal translocations. Most breaks on chromosome 18 are located at the 3’ UTR of the BCL2 gene and are broadly classified into three clusters, namely major breakpoint region (mbr), minor breakpoint cluster region (mcr) and the intermediate cluster region (icr). The RAG complex has been shown to cleave BCL2 mbr by recognizing an altered DNA structure. In the present study, by using a gel based assay, nature of the non-B DNA structure at BCL2 mbr was identified as parallel intramolecular G-quadruplex. Various studies including circular dichroism (CD), mutagenesis, DMS modification assay and 1H NMR showed the presence of three guanine tetrads in the structure. Further, evidence was also found for the formation of such a G-quadruplex structure within mammalian cells. In an effort to characterize the mechanism of fragility of mcr, a unique pattern of RAG cleavage was observed in a sequence dependent manner. Three independent nicks of equal efficiency were generated by RAGs at the cryptic sequence, “CCACCTCT”, at mcr and at a cytosine upstream of it, unlike a single specific nick at the 5’ of heptamer during V(D)J rearrangement. Interestingly, RAG nicking at mcr occured in the presence of both Mg2+ and Mn2+. Using recombination assay, followed by sequencing of the junctions, we find that mcr can recombine with standard RSS in vivo, albeit at a very low frequency. Mutations to this novel motif abolish recombination at the mcr within the cells. In order to determine the prevalence of t(14;18) translocation in the healthy Indian population, nested PCR approach followed by Southern hybridization was used. Results showed 34% prevalence of t(14;18) translocation in the Indian population. Although, no gender based difference was observed, an age dependent increase was found in adults. Further, presence of the t(14;18) transcripts was also detected. The mechanism underlying the fragility of the t(10;14) translocation involving HOX11 gene in T-cell leukemia is not known. Using primer extension assays on a plasmid DNA containing HOX11 breakpoint region, presence of consistent pause sites corresponding to two G-quadruplex forming regions, flanking the patient breakpoints, were detected. These replication blocks were dependent on K+ ions. Native gel shift assays, mutation analysis, S1 nuclease and CD, further revealed formation of intermolecular G-quadruplexes, unlike the BCL2 mbr. Further, sodium bisulfite modification assay indicated the presence of such structures in the genomic DNA within cells. Hence, we propose that two independent G-quadruplex structures formed in the HOX11 gene could interact with each other, thereby resulting in fragility of the intervening sequences, where majority of the patient breakpoints are mapped. Overall, this study has attempted to understand the role of both sequence and structure of DNA, in generating chromosomal fragility during t(14;18) translocation in FL and t(10;14) translocation in T-cell leukemia. These results may facilitate future studies in unraveling the mechanism leading to genomic instability in other lymphoid cancers.
2

Mitochondrial trafficking in a mouse model of psychiatric illness

Murphy, Laura Louise January 2017 (has links)
Disrupted in schizophrenia 1 (DISC1), located on chromosome 1, was first identified due to its disruption by a chromosomal translocation, t(1;11)(q42;q14). This translocation co-segregates with psychiatric illness in the Scottish family within which it was discovered. DISC1 is a component of the mitochondrial trafficking machinery and regulates trafficking of mitochondria in neurons, possibly implicating defective mitochondrial trafficking as a contributory factor in psychiatric illness. The product of another candidate gene for psychiatric illness, Glycogen synthase kinase 3β (GSK3β), is known to interact directly with DISC1 and has also been reported to be involved in mitochondrial trafficking. The interaction of these proteins has not been investigated in this process. The work in this thesis centres around a novel mouse model of the t(1:11) translocation. I use time-lapse imaging of live cells to show that hippocampal neurons cultured from this mouse model exhibit altered axonal mitochondrial trafficking, including reduced mitochondrial pausing. I also demonstrate that the DISC1 interactor GSK3β is a component of the mitochondrial trafficking machinery and investigate effects of the t(1:11) event upon this multi-protein complex. Finally, I demonstrate altered mitochondrial motility responses to overexpression of GSK3β in mutant neurons. Defective mitochondrial trafficking, particularly reduced pausing, could result in an altered distribution of mitochondria within neurons, leading to an impaired ability to respond to cellular conditions, such as the requirement to power synaptic vesicle release or the ion pumps that restore membrane potential following action potential generation. This could ultimately affect neuron viability, leading to brain dysfunction. My data therefore support a proposed disease mechanism whereby defective mitochondrial trafficking contributes to susceptibility to psychiatric illness in carriers of the t(1:11) translocation, and may be relevant to psychiatric illness in general.
3

Conséquences cellulaires de la formation de translocations chromosomiques : le modèle du lymphome anaplasique à grandes cellules (ALCL) / Cellular Consequences Of Chromosomal Translocation Formation : Model Of The Anaplastic Large Cell Lymphoma (ALCL)

Piganeau, Marion 12 April 2016 (has links)
Les translocations chromosomiques sont des événements cellulaires rares signatures de nombreux cancers, pouvant mener à l’expression de nouveaux gènes de fusion oncogènes ou à la dérégulation d’un oncogène existant. Cependant, le lien direct entre la formation de translocations et la tumorigenèse n’est pas toujours bien établi. Jusqu’à présent, la modélisation de translocations se limitait principalement à la surexpression du gène de fusion créé. Pour mieux comprendre leur contribution à l’oncogenèse, nous avons développé une nouvelle méthode pour induire des translocations oncogéniques de novo, afin de recréer plus fidèlement les premières étapes de la transformation cellulaire.Pour cela, nous nous appuyons sur la technologie des nucléases artificielles telles que les nucléases à doigt de zinc, les TALEN (TALE Nucleases) et le système CRISPR/Cas9 (Clustered Regularly Interspaced Palindromic Repeats) pour générer des cassures ciblées de l’ADN et induire la formation de remaniements chromosomiques. Nous nous sommes particulièrement concentrés sur l’induction de la translocation modèle t(2;5)(p23;q32) et du gène de fusion NPM-ALK, associés au Lymphome Anaplasique à Grandes Cellules (ALCL), dans divers modèles cellulaires. Nous avons ainsi mis en évidence des propriétés oncogéniques du gène de fusion NPM-ALK exprimé sous son promoteur endogène suite à la formation du réarrangement chromosomique. Cependant, l’induction de la translocation dans des lymphocytes T primaires suggère que cet événement ne suffit pas à lui seul à initier l’oncogenèse, et nécessite probablement un contexte génétique ou épigénétique favorable. / Chromosomal translocations are signatures of numerous cancers and lead to expression of fusion genes that act as oncogenes. However, the wealth of genomic aberrations found in cancer makes it challenging to assign a specific phenotypic change to a specific aberration. We set out to use genome editing with Zinc Finger Nucleases (ZFN), Tale Effector Nucleases (TALEN), and the CRISPR/Cas9 (Clustered Regularly Interspaced Palindromic Repeats) to induce de novo specific chromosomal translocations in human cells, thus generating new models to interrogate the contribution of tumor-related translocations in first steps of oncogenesis. We specially focused on Anaplastic Large Cell Lymphoma (ALCL) t(2;5) translocation and NPM-ALK consequent fusion gene. For the first time, we highlighted oncogenic properties for NPM-ALK fusion expressed under endogenous promoter. However, translocation induction in primary T cells suggests that t(2;5) is not sufficient to initiate ALCL oncogenesis, and likely requires favourable genetic or epigenetic or context.
4

Chromosomal Translocation of Protamine 1 Leads to a Patched 1 Deficiency During Medulloblastoma Tumorigenesis

Heller, Allie, 0000-0001-8008-3982 January 2023 (has links)
Pediatric medulloblastoma (MB) is a cerebellar brain tumor namely characterized by its origination in early development, as early as embryogenesis. MB is thought to originate from the highly heterogeneous granular neuron precursor (GNP) cell population that resides within the rhombic lip of the dorsal hindbrain region, and is particularly susceptible to the effects of the oncogenic Sonic Hedgehog (SHH) signaling pathway. Patched 1 (Ptch1), typically a transmembrane SHH pathway tumor suppressor gene, is mutated in 20% of MB cases, otherwise known as SHH-group MBs. This mutation in MB presents as a loss of heterozygosity (LOH), where the wild type allele of Ptch 1 is deleted. Ptch 1 receptor silencing activates downstream target genes such as proto-oncogene Smoothened (Smo) and allows for the initiation of tumorigenesis. However, the molecular basis for Ptch1 LOH in MB remains elusive. We have discovered a cancer-testis antigen, Protamine 1 (Prm 1), that is present in the Ptch 1 locus in SHH-group MB tumors. By utilization of the RNAscope technique, we confirm mRNA expression of Prm 1 in cerebellar tumor tissue, predominantly from tumor cells, but not in stromal cells. These studies reveal that tumor cells highjack the promoter of Ptch 1 to express Prm 1, promoting tumor progression. These findings establish the mechanism for Ptch 1 LOH in SHH-group MB, and provide the rationale to define the cell of origin for SHH group MB based on Prm 1 expression. / Biomedical Sciences
5

Altered Kinetics of Non-Homologous End Joining Mediated DNA Repair in Mouse Models of Aging and Leukemia

Puthiyaveetil Abdulkader, Abdul Gafoor 09 November 2012 (has links)
DNA encodes the genetic instructions for the development and function of organisms and hence maintaining genomic integrity is essential for the propagation of life. However, DNA molecules are under constant threat of metabolic and environmental insults resulting in DNA damages including DNA double strand breaks (DSB), which are considered as a serious threat to cell survival. The majority of these DSB are repaired by Non-homologous end joining (NHEJ). Unrepaired DSB can lead to genomic instability resulting in cell cycle arrest, apoptosis, and mutations. Thus, delineating this DNA repair process is important in understanding the molecular mechanisms of aging and malignant progression. B lymphocytes undergo physiological DNA breaks and NHEJ-mediated DNA repair during their bone marrow differentiation and peripheral class switch recombination (CSR), thus lending them as a good model system in which to delineate the DNA repair mechanisms. To determine the effect of aging on NHEJ, B lymphocytes from old mice were analyzed. The results showed compromised DNA repair in cells from old mice compared to cells from adult mice. These results suggest that NHEJ is compromised during aging and might play critical roles in the aging process and age-associated conditions. To delineate the role of a CT in regulating the immune system, transgenic mice expressing NUP98-HOXD13 (NHD13) were analyzed for B lymphocyte differentiation, peripheral development, CSR, and antibody production. The results showed impaired B cell development and antibody production, which worsened with antigenic stimulation, suggesting the role of NHD13 in immune regulation. These studies explored the possibility of altered NHEJ-mediated DNA repair as a contributing reason for aging process and age-associated conditions. Also, the results from NHD13 study suggested that a primary CT can result in impaired NHEJ and regulate immune cell development and function. Furthermore, the results pointed to the possibility that a primary CT may lead to secondary mutations through altered NHEJ. Thus, these studies shed insight into the molecular mechanisms of altered NHEJ and may help in developing preventive or therapeutic strategies against accumulation of DNA damage, aging process and secondary mutations. / Ph. D.
6

Etudes des translocations chromosomiques en utilisant les méthodes d'édition du génome : des mécanismes moléculaires à l’oncogenèse / Cancer Translocations Induction Using Genome Editing : from Molecular Mechanisms to Oncogenesis

Babin, Loélia 27 September 2019 (has links)
Les translocations chromosomiques sont associées à un grand nombre de cancers. Les translocations chromosomiques sont impliquées dans la tumorigenèse par différents mécanismes : elles conduisent soit à une dérégulation d’un oncogène, soit à la formation d’un nouvel oncogène de fusion. Cependant, le lien direct entre l'apparition d'une translocation chromosomique et la formation d'une tumeur n'est pas totalement établi. Par exemple, plusieurs translocations associées au cancer ont été détectées dans le sang d’individus sains voire dans le sang de cordon des bébés avec une prévalence bien supérieure à celle de la maladie. Ceci suggère que la seule formation de la translocation ne suffit pas toujours à induire l’oncogenèse. La plupart des travaux de recherche antérieurs reposaient sur la surexpression de la protéine de fusion, oncogène supposé. Ces approches présentent de nombreuses limites, la translocation chromosomique est alors absente de même que le contexte chromosomique natif du gène de fusion (promoteur endogène, statut de la chromatine, etc.) ou les éventuels effets d’haplo-insuffisance qui ne sont pas récapitulés. La molécule d’ADN étant organisée de manière non aléatoire dans le noyau, les réarrangements chromosomiques sont également susceptibles d’affecter le statut épigénétique, la réplication et la transcription du chromosome dérivatif entier, en plus des segments d’ADN nouvellement juxtaposés. Or la technologie CRISPR/Cas9, permet de reproduire la translocation chromosomique in situ, après avoir induit deux cassures double-brin simultanées. Ce travail de thèse a porté spécifiquement sur la translocation t(2,5) (p23, q35) qui induit l’expression de la protéine de fusion NPM1-ALK fréquemment rencontrée dans le lymphome anaplasique à grandes cellules (ALCL). Nous avons reproduit la t(2,5) à la fois dans des lignées cellulaires mais aussi dans des cellules T primaires à la fin de ma thèse. Nous avons pu montrer des modifications significatives du timing de réplication des cellules qui portent la translocation en comparaison des cellules isogéniques de départ (par la méthode du Répli-seq) pouvant avoir un impact sur l’homéostasie des cellules tumorales. En parallèle, nous avons mis en évidence la formation d'ARN circulaires de fusion spécifiques, exprimés à partir du gène de fusion, spécifiques des lignées tumorales. Ces ARN circulaires pourraient donner naissance à de nouveaux biomarqueurs diagnostic/pronostic dans le futur. Ces travaux permettront de mieux comprendre les conséquences des translocations chromosomiques oncogéniques dans les cellules humaines et pourraient mener vers de nouvelles orientations thérapeutiques à l’avenir. / Chromosomal translocations are associated with a wide range of cancers. These chromosomal rearrangements are implicated in tumorigenesis by different mechanisms: either they lead to oncogene upregulation or tumor suppressor downregulation. However, the direct link between the appearance of one chromosomal translocation and tumor formation is not always clear. For example, several cancer translocations have been found in PBMCs or in cord blood cells from healthy individuals, suggesting that translocation formation alone is not always sufficient to drive oncogenesis. Most of previous research works on cancer translocation relied on studies using overexpression of the fusion protein. These approaches do not reproduce the chromosome arm translocation nor the chromosomal context of the fusion gene (endogenous promotor, chromatin status etc…) or do not recapitulate a potential haplo-insufficiency of the translocated cells. Because the DNA molecule is organized non-randomly in the nucleus, chromosomal rearrangements are also likely to impact the epigenetic, replication and transcriptional status of the whole rearranged chromosome in addition to the newly juxtaposed gene segments. Using CRISPR/Cas9 technology, we can recapitulate chromosomal translocation in situ, after inducing 2 concurrent double-strand breaks. In this work, we focus on t(2,5)(p23,q35) leading to NPM1-ALK fusion protein frequently found in Anaplasic Large Cell Lymphoma (ALCL). We could recapitulate t(2;5) in cell lines but more importantly in human primary T cells from healthy donors. We showed significant modifications on Replication Timing in model cell lines compare to isogenic non-translocated cells (using Repli-seq analysis). Importantly, these changes might have a direct impact on tumor cell homeostasis. In parallel, we also highlighted the formation of specific fusion circular RNAs expressed from the fusion gene also found in tumor cells. These circular RNAs could give rise to new diagnostic/prognostic biomarkers in the future. This work will lead to a better understanding of the consequences of cancer translocation in human cells and could give new directions for therapeutics in future.
7

Characterization of FET and ETS domain contributions to fusion oncoprotein activity in Ewing sarcoma

Boone, Megann A. January 2021 (has links)
No description available.
8

Caractérisation cytogénétique et moléculaire des translocations chromosomiques dans la phase blastique de la leucémie myéloïde chronique

Hazourli, Sawcène 01 August 2012 (has links)
La leucémie myéloïde chronique (LMC) est un modèle d’évolution tumorale dans les cancers humains. Le processus d’évolution de la LMC de la phase chronique (PC) à la phase blastique (PB) est caractérisé par un arrêt de différenciation et l’acquisition de la capacité d’autorenouvellement incontrôlé d’une cellule souche ou d’un progéniteur hématopoïétique. La LMC en PB est associée à la présence d’anomalies génétiques additionnelles à la fusion BCR-ABL1 qui résulte de la translocation chromosomique t(9;22). Contrairement aux patients en PC, les patients en PB de la LMC n’obtiennent pas une réponse moléculaire complète à long terme avec 1’Imatinib mesylate, un inhibiteur de la tyrosine kinase (ITK) BCR-ABL1. De plus, les ITKs de deuxième et troisième générations sont moins efficaces en PB de la LMC lorsque les cellules leucémiques ont acquis une résistance au traitement indépendante des mutations de BCR-ABL1. Les mécanismes moléculaires des voies de signalisation impliquées dans la progression de la LMC en PB ne sont pas entièrement élucidés. Le but de notre travail est de caractériser de nouvelles anomalies génétiques dans la PB de la LMC. Nous avons identifié en cytogénétique, quatre nouvelles translocations chromosomiques : t(1;21)(p36;q22), t(7;17)(p15;q22), t(8;17)(q11;q22) et t(2;12)(q31;p13) dans les cellules leucémiques de patients en PB de la LMC résistants au traitement. En utilisant des techniques d'hybridation in situ en fluorescence, de RT-PCR et de séquençage, nous avons délimité les régions à investiguer au niveau des points de cassure et identifié un réarrangement de plusieurs gènes codant pour des facteurs de transcription importants lors de l’hématopoïèse tels que RUNX1, ETV6, PRDM16 et HOXA. L’altération de ces gènes pourrait expliquer l’arrêt de différenciation et/ou l’acquisition de la capacité d’autorenouvellement caractéristiques de la LMC en PB. Nous avons identifié les fusions RUNX1-PRDM16, MSI2-HOXA, MSI2-SOX17 et ETV6-HOXD11, respectivement associées aux translocations chromosomiques t(1;21), t(7;17), t(8;17) et t(2;12). Ces fusions génèrent différents transcrits alternatifs qui maintiennent et altèrent le cadre ouvert de lecture. L’analyse des séquences des transcrits chimériques identifiés dans ce projet, incluant RUNX1-PRDM16, MSI2-HOXA9, MSI2-HOXA10, MSI2-HOXA11 et ETV6-HOXD11, nous a permis de prédire les domaines fonctionnels potentiellement présents au niveau des protéines chimériques prédites. Les transcrits de fusion qui respectent le cadre ouvert de lecture peuvent générer des domaines fonctionnels des deux partenaires. C’est le cas des deux transcrits identifiés pour la fusion RUNX1-PRDM16 où le domaine de liaison à l’ADN RHD (Runt homology domain) de RUNX1 est fusionné avec la quasi-totalité des domaines de PRDM16. Les transcrits de fusion qui ne respectent pas le cadre ouvert de lecture donnent des formes tronquées des transcrits RUNX1, MSI2 et ETV6. La juxtaposition des régions promotrices de ces derniers en 5’ de leurs partenaires entraîne l’activation de la forme courte oncogénique de PRDM16 dans la t(1;21) ou de différents gènes HOXA/D dans les t(7;17) et t(2;12), ainsi que l’expression aberrante d’un nouveau transcrit alternatif de SOX17 dans la t(8;17). Notre étude nous a permis d’identifier de nouveaux gènes de fusion et/ou une activation de gènes qui pourraient coopérer avec la fusion BCR-ABL1 dans la progression de la LMC et être impliqués dans la résistance au traitement de la LMC en phase avancée. La caractérisation des événements génétiques associés à la transformation blastique de la LMC est essentielle pour l’investigation des voies moléculaires impliquées dans cette phase de la maladie. Investiguer la résistance au traitement de ces patients pourrait aussi contribuer à identifier de nouvelles cibles thérapeutiques dans cette leucémie. / Chronic myeloid leukemia (CML) is a model of tumor evolution in human cancer. The evolution process of CML from the chronic phase (CP) to the blastic phase (BP) is characterized by a blockade of differentiation and acquisition of uncontrolled self-renewal capacity by hematopoietic stem or progenitor cells. CML-BP is associated with the presence of other genetic abnormalities in addition to the BCR-ABL1 fusion which results from chromosomal translocation t(9;22). Unlike patients in the CP, patients with CML-BP do not achieve a long-term complete molecular response to Imatinib mesylate, an inhibitor targeting the BCR-ABL1 tyrosine kinase (TK). Moreover, second and third generation TK inhibitors are less effective in CML-BP when leukemic cells have acquired a therapeutic resistance independent of BCR-ABL1 mutations. The molecular mechanisms of the signaling pathways responsible for CML progression from CP to BP are poorly understood. The aim of our project is to characterize novel genetic alterations in the BP of CML. We have identified by cytogenetics, four novel chromosomal translocations: t(1;21)(p36;q22), t(7;17)(p15;q22), t(8;17)(q11;q22) and t(2;12)(q31;p13) in leukemic cells of patients with CML-BP resistant to therapy. Using fluorescence in situ hybridization, RT-PCR and sequencing techniques, we have mapped chromosomal translocation breakpoints and identified rearranged genes encoding transcription factors which are key regulators of hematopoiesis, such as RUNX1, ETV6, PRDM16 and HOXA. The disruption of these genes could explain the differentiation blockade and/or uncontrolled self-renewal associated with the CML-BP. We identified RUNX1-PRDM16, MSI2-HOXA, MSI2-SOX17 and ETV6-HOXD11 fusions created by chromosomal translocations t(1;21), t(7;17), t(8;17) and t(2;12) respectively. These fusions generate different alternative transcripts that both maintain and alter the open reading frame. Sequence analysis of chimeric transcripts identified in this project, including RUNX1-PRDM16, MSI2-HOXA9, MSI2-HOXA10, MSI2-HOXA11 and ETV6-HOXD11, allowed us to predict potential functional domains present in putative chimeric proteins. In-frame fusion transcripts can generate functional domains from both fusion partners. For example, in two RUNX1-PRDM16 transcripts, the RUNX1 DNA binding domain RHD (Runt homology domain) is fused to the majority of PRDM16 domains. Out-of-frame fusion transcripts resulted in truncated forms of RUNX1, MSI2 and ETV6. The juxtaposition of promoter regions of these genes to the 5’ part of their partners resulted in the activation of the oncogenic short form of PRDM16 in the t(1;21) or of different HOXA/D genes in t(7;17) and t(2;12), and in the aberrant expression of a novel alternative SOX17 transcript in the t(8;17). Our study allowed us to identify novel fusion genes and/or activation of genes that potentially cooperate with BCR-ABL1 fusion in the progression of CML and contribute to treatment resistance of this disease. The characterization of genetic events related to the blastic transformation of CML is an important step in the investigation of molecular pathways involved in this stage of the disease. Understanding treatment resistance of these patients might help to identify new therapeutic targets in this leukemia.
9

Correlação cariótipo-genótipo-fenótipo de rearranjo cromossômico estrutural familiar envolvendo as regiões 4p e 12q / Karyotype-genotype-phenotype correlation of a familial structural chromosomal rearrangement involving regions 4p and 12q

Joaquim, Tatiana Mozer 21 March 2016 (has links)
Rearranjos cromossômicos estruturais estão potencialmente associados ao desenvolvimento de doenças genéticas devido à disrupção, inativação ou alteração da dosagem gênica. O objetivo deste projeto foi realizar a caracterização genômica de duas pacientes e seus familiares portadores de rearranjo cromossômico estrutural envolvendo o braço curto do cromossomo 4 e o braço longo do cromossomo 12, associando técnicas de citogenética clássica (bandamento GTG), citogenética molecular (FISH) e citogenômica (array-CGH), para definição diagnóstica e maior conhecimento sobre os fatores envolvidos na correlação cariótipo-genótipo-fenótipo. Foram avaliados seis indivíduos, duas pacientes, primas em primeiro grau que apresentavam alterações fenotípicas, assim como seus familiares, portadores de translocação aparentemente equilibrada e fenótipo normal. Apesar das duas pacientes apresentarem alteração cromossômica comum, derivativo do cromossomo 4 [der(4)], foram observados achados fenotípicos distintos. A investigação permitiu a definição do diagnóstico de deleção 4p16 e trissomia 12qter para as duas pacientes com fenótipo alterado e cariótipo 46,XX,der(4)t(4;12)(p16;q24.3), a definição precisa dos pontos de quebra em 4p16.3 e 12q24.31->q24.33, assim como a determinação da origem parental do rearranjo e a definição do diagnóstico citogenético final de quatro portadores de translocação aparentemente equilibrada e cariótipo t(4;12)(4pter->4p16.3::2q24.31->12qter;12qter->12q24.31::4p16.3->4pter),direcionando o aconselhamento genético para a família. Nas duas pacientes, a técnica de array-CGH (Plataforma 2x400K, Agilent®) detectou uma diferença sutil de tamanho entre as perdas e ganhos referentes aos cromossomos envolvidos no rearranjo, sendo diagnosticado em P1 uma perda de 2.707.221 pb na citobanda 4p16.3, além de um ganho de 12.405.205 pb em 12q24.31->q24.33. A paciente 2 apresentou uma perda de 2.710.969 pb em 4p16.3 e um ganho de 12.393.885 pb em 12q24.31->q24.33. Ambas as regiões de desequilíbrio genômico incluem genes que podem ser relevantes para manifestação fenotípica observada nas pacientes, entre eles: WHSC1, NELFA, LETM1, FGFRL1 e SPON2. Os resultados da investigação citogenômica indicaram, ainda, a presença de translocação equilibrada nos quatro indivíduos portadores, não sendo detectadas perdas e/ou ganhos genômicos nas regiões dos pontos de quebra cromossômica. Os resultados obtidos na investigação do padrão de metilação dos genes FGFRL1 e SPON2 não permitiram afirmar que uma provável repressão da expressão gênica devido ao imprinting materno e paterno esteja associada às características fenotípicas distintas observadas nas duas pacientes. Embora tenha sido possível a indicação de genes correlacionados ao fenótipo das pacientes, a correlação entre a alteração genética e o fenótipo das mesmas pode depender da ação sinérgica dos mais de 190 genes envolvidos neste rearranjo cromossômico estrutural familiar. / Structural chromosomal rearrangements are potentially associated with the development of genetic disorders due to disruption, inactivation or gene dosage alterations. The objective of this project was to perform the genomic characterization of a familial structural chromosomal rearrangement involving the short arm of chromosome 4 and the long arm of chromosome 12 in two patients and carriers. The experimental approach involved using a combination of classical cytogenetic techniques (GTG banding), molecular cytogenetics (FISH) and cytogenomics (array-CGH), to provide a diagnostic definition and a better understanding of how changes in the karyotype and genotype may be associated with the phenotype. Six individuals were evaluated, two patients with phenotypic abnormalities, as well as the carriers of an apparently balanced 4p;12q translocation with normal phenotypes. Although the two patients showed a common chromosomal abnormality, the derivative chromosome 4 [der (4)], they presented distinct phenotypic findings. The investigation provided a definition of the diagnosis of 4p16 deletion and trisomy 12qter for the two patients with abnormal phenotypes and a karyotype 46,XX,der(4)t(4;12)(p16;q24.3). In addition a precise definition of the breakpoints at 4p16.3 and 12q24.31->q24.33, and the parental origin of the rearrangement was determined. A precise definition of the cytogenetic diagnosis of four carriers with an apparently balanced translocation and karyotype t(4;12)(4pter->4p16.3::2q24.31->12qter; 12qter 12q24.31->4pter::4p16.3), facilitated the genetic counseling for the family. In both patients, the array-CGH technique (2x400K Platform, Agilent®) detected a subtle difference in size between losses and gains in the chromosomal regions involved in the rearrangement. Patient 1 presented a loss of 2,707,221 bp in the cytoband 4p16.3, and a gain of 12,405,205 bp in 12q24.31->q24.33. Patient 2 had a loss of 2,710,969 bp in 4p16.3 and a gain of 12,393,885 bp in 12q24.31 -> q24.33. Both regions of genomic imbalance included genes that may be relevant to phenotypic findings observed in our patients, including: WHSC1, NELFA, LETM1, FGFRL1 and SPON2. Genomic findings also confirmed the presence of a balanced translocation in four carriers, with no genomic losses and/or gains in the regions of chromosome breakpoints. The results of the investigation of the methylation pattern of FGFRL1 and SPON2 genes could not demonstrate that repression of gene expression due to maternal and paternal imprinting was associated with the distinct phenotypes observed in the two patients. Although it has been possible to indicate genes related to the phenotype of the patients, the correlation between the genetic alteration and phenotype may depend on the synergistic action of multiple genes from more than the 190 involved in this familial chromosomal rearrangement.
10

Caractérisation cytogénétique et moléculaire des translocations chromosomiques dans la phase blastique de la leucémie myéloïde chronique

Hazourli, Sawcène 01 August 2012 (has links)
La leucémie myéloïde chronique (LMC) est un modèle d’évolution tumorale dans les cancers humains. Le processus d’évolution de la LMC de la phase chronique (PC) à la phase blastique (PB) est caractérisé par un arrêt de différenciation et l’acquisition de la capacité d’autorenouvellement incontrôlé d’une cellule souche ou d’un progéniteur hématopoïétique. La LMC en PB est associée à la présence d’anomalies génétiques additionnelles à la fusion BCR-ABL1 qui résulte de la translocation chromosomique t(9;22). Contrairement aux patients en PC, les patients en PB de la LMC n’obtiennent pas une réponse moléculaire complète à long terme avec 1’Imatinib mesylate, un inhibiteur de la tyrosine kinase (ITK) BCR-ABL1. De plus, les ITKs de deuxième et troisième générations sont moins efficaces en PB de la LMC lorsque les cellules leucémiques ont acquis une résistance au traitement indépendante des mutations de BCR-ABL1. Les mécanismes moléculaires des voies de signalisation impliquées dans la progression de la LMC en PB ne sont pas entièrement élucidés. Le but de notre travail est de caractériser de nouvelles anomalies génétiques dans la PB de la LMC. Nous avons identifié en cytogénétique, quatre nouvelles translocations chromosomiques : t(1;21)(p36;q22), t(7;17)(p15;q22), t(8;17)(q11;q22) et t(2;12)(q31;p13) dans les cellules leucémiques de patients en PB de la LMC résistants au traitement. En utilisant des techniques d'hybridation in situ en fluorescence, de RT-PCR et de séquençage, nous avons délimité les régions à investiguer au niveau des points de cassure et identifié un réarrangement de plusieurs gènes codant pour des facteurs de transcription importants lors de l’hématopoïèse tels que RUNX1, ETV6, PRDM16 et HOXA. L’altération de ces gènes pourrait expliquer l’arrêt de différenciation et/ou l’acquisition de la capacité d’autorenouvellement caractéristiques de la LMC en PB. Nous avons identifié les fusions RUNX1-PRDM16, MSI2-HOXA, MSI2-SOX17 et ETV6-HOXD11, respectivement associées aux translocations chromosomiques t(1;21), t(7;17), t(8;17) et t(2;12). Ces fusions génèrent différents transcrits alternatifs qui maintiennent et altèrent le cadre ouvert de lecture. L’analyse des séquences des transcrits chimériques identifiés dans ce projet, incluant RUNX1-PRDM16, MSI2-HOXA9, MSI2-HOXA10, MSI2-HOXA11 et ETV6-HOXD11, nous a permis de prédire les domaines fonctionnels potentiellement présents au niveau des protéines chimériques prédites. Les transcrits de fusion qui respectent le cadre ouvert de lecture peuvent générer des domaines fonctionnels des deux partenaires. C’est le cas des deux transcrits identifiés pour la fusion RUNX1-PRDM16 où le domaine de liaison à l’ADN RHD (Runt homology domain) de RUNX1 est fusionné avec la quasi-totalité des domaines de PRDM16. Les transcrits de fusion qui ne respectent pas le cadre ouvert de lecture donnent des formes tronquées des transcrits RUNX1, MSI2 et ETV6. La juxtaposition des régions promotrices de ces derniers en 5’ de leurs partenaires entraîne l’activation de la forme courte oncogénique de PRDM16 dans la t(1;21) ou de différents gènes HOXA/D dans les t(7;17) et t(2;12), ainsi que l’expression aberrante d’un nouveau transcrit alternatif de SOX17 dans la t(8;17). Notre étude nous a permis d’identifier de nouveaux gènes de fusion et/ou une activation de gènes qui pourraient coopérer avec la fusion BCR-ABL1 dans la progression de la LMC et être impliqués dans la résistance au traitement de la LMC en phase avancée. La caractérisation des événements génétiques associés à la transformation blastique de la LMC est essentielle pour l’investigation des voies moléculaires impliquées dans cette phase de la maladie. Investiguer la résistance au traitement de ces patients pourrait aussi contribuer à identifier de nouvelles cibles thérapeutiques dans cette leucémie. / Chronic myeloid leukemia (CML) is a model of tumor evolution in human cancer. The evolution process of CML from the chronic phase (CP) to the blastic phase (BP) is characterized by a blockade of differentiation and acquisition of uncontrolled self-renewal capacity by hematopoietic stem or progenitor cells. CML-BP is associated with the presence of other genetic abnormalities in addition to the BCR-ABL1 fusion which results from chromosomal translocation t(9;22). Unlike patients in the CP, patients with CML-BP do not achieve a long-term complete molecular response to Imatinib mesylate, an inhibitor targeting the BCR-ABL1 tyrosine kinase (TK). Moreover, second and third generation TK inhibitors are less effective in CML-BP when leukemic cells have acquired a therapeutic resistance independent of BCR-ABL1 mutations. The molecular mechanisms of the signaling pathways responsible for CML progression from CP to BP are poorly understood. The aim of our project is to characterize novel genetic alterations in the BP of CML. We have identified by cytogenetics, four novel chromosomal translocations: t(1;21)(p36;q22), t(7;17)(p15;q22), t(8;17)(q11;q22) and t(2;12)(q31;p13) in leukemic cells of patients with CML-BP resistant to therapy. Using fluorescence in situ hybridization, RT-PCR and sequencing techniques, we have mapped chromosomal translocation breakpoints and identified rearranged genes encoding transcription factors which are key regulators of hematopoiesis, such as RUNX1, ETV6, PRDM16 and HOXA. The disruption of these genes could explain the differentiation blockade and/or uncontrolled self-renewal associated with the CML-BP. We identified RUNX1-PRDM16, MSI2-HOXA, MSI2-SOX17 and ETV6-HOXD11 fusions created by chromosomal translocations t(1;21), t(7;17), t(8;17) and t(2;12) respectively. These fusions generate different alternative transcripts that both maintain and alter the open reading frame. Sequence analysis of chimeric transcripts identified in this project, including RUNX1-PRDM16, MSI2-HOXA9, MSI2-HOXA10, MSI2-HOXA11 and ETV6-HOXD11, allowed us to predict potential functional domains present in putative chimeric proteins. In-frame fusion transcripts can generate functional domains from both fusion partners. For example, in two RUNX1-PRDM16 transcripts, the RUNX1 DNA binding domain RHD (Runt homology domain) is fused to the majority of PRDM16 domains. Out-of-frame fusion transcripts resulted in truncated forms of RUNX1, MSI2 and ETV6. The juxtaposition of promoter regions of these genes to the 5’ part of their partners resulted in the activation of the oncogenic short form of PRDM16 in the t(1;21) or of different HOXA/D genes in t(7;17) and t(2;12), and in the aberrant expression of a novel alternative SOX17 transcript in the t(8;17). Our study allowed us to identify novel fusion genes and/or activation of genes that potentially cooperate with BCR-ABL1 fusion in the progression of CML and contribute to treatment resistance of this disease. The characterization of genetic events related to the blastic transformation of CML is an important step in the investigation of molecular pathways involved in this stage of the disease. Understanding treatment resistance of these patients might help to identify new therapeutic targets in this leukemia.

Page generated in 0.0944 seconds