Spelling suggestions: "subject:"tafenoquina"" "subject:"tafenoquine""
1 |
Emprego da microextração líquido-líquido dispersiva na determinação da tafenoquina em amostras de plasma humanoLobo, Amanda Mamed de Gusmão 21 December 2015 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-06-13T20:35:05Z
No. of bitstreams: 1
Reprodução Não Autorizada.pdf: 47716 bytes, checksum: 0353d988c60b584cfc9978721c498a11 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-06-13T20:41:05Z (GMT) No. of bitstreams: 1
Reprodução Não Autorizada.pdf: 47716 bytes, checksum: 0353d988c60b584cfc9978721c498a11 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-06-13T20:41:24Z (GMT) No. of bitstreams: 1
Reprodução Não Autorizada.pdf: 47716 bytes, checksum: 0353d988c60b584cfc9978721c498a11 (MD5) / Made available in DSpace on 2016-06-13T20:41:24Z (GMT). No. of bitstreams: 1
Reprodução Não Autorizada.pdf: 47716 bytes, checksum: 0353d988c60b584cfc9978721c498a11 (MD5)
Previous issue date: 2015-12-21 / Tafenoquine (TQ) is an 8-aminoquinolone, synthetic analogue of primaquine which is in fase
III tests for the treatment of human malaria. It shows better antimalarial activity than
primaquine in vitro and is usually well tolerated in patients. There are some methods for TQ
quantification in human plasm, but none uses Dispersive-Liquid-Liquid Microextraction
(DLLME), an extraction technique that shows as mean advantages: miniaturization, low cost,
high efficiency of extraction and pre-concentration and high potential for routine application.
The aim of this study was to evaluate the use of DLLME to determine tafenoquine in human
plasma. After protein precipitation, TQ was extracted from plasma by DLLME using
chloroform and acetonitrile as extraction solvents and dispersants, respectively. The mobile
phase consisted of methanol/acetonitrile/sodium acetate (10 mmol L-1, pH 6.7, 25oC)/acetic
acid (50:30:20:0.1 v/v/v) and a C18 column (15 x 4.6mm, 5m) was used. The UV detection
was performed at 262 nm and 1 mL/min as flow rate. The following factors that influences
extraction efficiency were evaluated and optimized: dispersing solvent, solvent extractor,
extractor solvent volume, pH and extraction time. During optimization, chloroform and
acetonitrile showed higher recovery as an extractor and dispersant solvent, respectively. For
evaluation of solvent extractor volume, the best result was obtained by adding 1 mL of a
solution containing 30% of solvent extractor. For pH evaluation, greater extraction was
observed by adding 100 L of 0.5 mol L- 1 NaOH solution in the sample. Finally, 2 min was
the greater recovery extraction time. After optimized conditions, the method recovery was
78,3% and the lower limit of quantification was 50 ng mL-1. This method was considered linear
over the range 50-1500 ng mL-1 (r2 = 0,99), with satisfactory accuracy and precision, and also
may be useful in routine analyses specially because of the simplicity of this tecnique, rapidity
and low use of solvents, presented features by DLLME tecnique / A Tafenoquina (TQ) corresponde a uma 8-aminoquinolina sintética e análoga da primaquina,
que está em testes de fase III para o tratamento da malária humana. Apresenta melhor atividade
antimalárica em relação ao congênere in vitro e é geralmente bem tolerada nos pacientes.
Existem alguns métodos para quantificar a TQ em plasma humano, porém nenhum utiliza a
técnica de microextração líquido-líquido dispersiva (DLLME, do inglês Dispersive Liquid-
Liquid Microextraction), método que apresenta as seguintes vantagens: miniaturização, baixo
custo, alta eficiência de extração e pré-concentração e elevado potencial para aplicação de
rotina. O objetivo deste estudo foi avaliar o emprego da microextração líquido-líquido
dispersiva para a determinação da tafenoquina em plasma humano. Após a precipitação de
proteínas, TQ foi extraída do plasma por DLLME utilizando clorofórmio e acetonitrila como
solvente extrator e dispersor, respectivamente. A fase móvel consistiu em
metanol/acetonitrila/acetato de sódio (10 mmol L-1, pH 6,7, 25°C)/ácido acético (50:30:20:0,1
v/v/v) em conjunto com uma coluna C18 (15 x 4,6 mm, 5m). O comprimento de onda utilizado
foi 262 nm com vazão de 1mL/min. Os seguintes fatores que influenciam a eficiência de
extração foram avaliados e otimizados: solvente dispersor, solvente extrator, volume de
solvente extrator, pH e tempo de extração. Durante a otimização, clorofórmio e acetonitrila
apresentaram maior recuperação como solvente extrator e dispersor, respectivamente. Para
volume de solvente extrator, obteve-se melhor resultado adicionando-se 1 mL de uma solução
contendo 30% de solvente extrator. Na avaliação do pH, maior extração foi observada
adicionando-se 100 L de solução de NaOH 0,5 mol L-1 na amostra. Por fim, o tempo de
extração de 2 min foi o que apresentou maior recuperação. Com o método otimizado, a
recuperação observada foi 78,3% e o limite inferior de quantificação foi 50 ng mL-1. O método
foi linear no intervalo de 50 a 1500 ng mL-1 (r2 = 0,99) com precisão e exatidão satisfatórias e,
portanto, pode ser útil em análises de rotina, especialmente pela simplicidade da técnica, rapidez
e baixo uso de solvente, características apresentadas pela técnica de DLLME
|
Page generated in 0.0273 seconds