Spelling suggestions: "subject:"tantalum oxides"" "subject:"santalum oxides""
1 |
Resistive switching in tantalum oxide for emerging non-volatile memory applicationsZhuo, Yiqian Victor January 2014 (has links)
No description available.
|
2 |
The thermodynamics of the rhenium-oxygen and molybdenum-oxygen systems and the defect structure of alpha tantalum pentoxide /Foster, James Sheridan January 1964 (has links)
No description available.
|
3 |
Structural study of the ferroelectric materials PbNb₂O₆ and PbTa₂O₆Reeve, William Francis January 1999 (has links)
No description available.
|
4 |
Studies On Thermodynamics And Phase Equilibria Of Selected Oxide SystemsShekhar, Chander 18 July 2011 (has links) (PDF)
The availability of high quality thermodynamic data on solid solutions and compounds present in multicomponent systems assists in optimizing processing parameters for synthesis, and in evaluating stability domains and materials compatibility under different conditions. Several oxide systems of technological interest, for which thermodynamic data was either not available or is inconsistent were selected for study. Thermodynamic properties of phases present in the binary systems Nb-O and Ta-O were measured in the temperature range from 1000 to 1300 K using solid state electrochemical cells based on (Y2O3) ThO2 as the electrolyte. Based on these measurements and more recent data on heat capacity and phase transitions reported in the literature, Gibbs energy of formation for NbO, NbO2, NbO2.422, Nb2O5-x and Ta2O5 were reassessed. Significant improvements in the data for NbO2, Nb2O5 and Ta2O5 are suggested. The pseudo binary system MoO2-TiO2 was investigated because of the inconsistency between the phase diagram and thermodynamic properties of the solid solution reported in the literature. Based on new electrochemical measurements, a new improved phase diagram for the system MoO2-TiO2, incorporating recently discovered monoclinic to tetragonal phase transition in MoO2 at 1533 K, is presented. Isothermal section of the phase diagram for the ternary systems Cr-Rh-O and Ta-Rh-O and thermodynamic properties of ternary oxides CrRhO3 and TaRhO4 were measured for the first time in the temperature range from 900 to 1300 K. Phase relations for these systems have been computed as a function of oxygen potential at fixed temperature and as a function of temperature at selected oxygen partial pressures.
Metal-spinel-corundum three-phase equilibrium in the Ni-Al-Cr-O system at 1373 K has been explored because of its relevance to high temperature corrosion of super alloys. The Gibbs energy of mixing of spinel solid solution was derived from the tie-line data and is compared with the values calculated from cation distribution models. An oxygen potential diagram is developed for the decomposition of spinel solid solution to nickel and corundum solid solution at 1373 K under reducing conditions.
The high temperature thermodynamic properties of the phases present in quaternary systems Ca-Co-Al-O and Ca-Cu-Ti-O have been measured by solid state electrochemical cells based on stabilized zirconia. Gibbs energies of formation of the quaternary oxides Ca3CoAl4O10 in the temperature range from 1150 to1500 K and CaCu3Ti4O12 in the range from 900 to 1350 K are presented. Chemical potential diagrams have been computed for the system Al2O3-CaO-CoO at 1500 K. The oxygen potential corresponding to the decomposition of the complex perovskite CaCu3Ti4O12 (CCTO) has been calculated as a function of temperature from the emf of the cell. The effect of the oxygen partial pressure on the phase relations in the pseudo-ternary system CaO-(CuO/Cu2O)-TiO2 at 1273 K has been evaluated. The phase diagrams are useful for the control of the secondary phases that form during synthesis of CCTO, a material exhibiting colossal dielectric response.
|
5 |
Infrared properties of dielectric thin films and near-field radiation for energy conversionBright, Trevor James 13 January 2014 (has links)
Studies of the radiative properties of thin films and near-field radiation transfer in layered structures are important for applications in energy, near-field imaging, coherent thermal emission, and aerospace thermal management. A comprehensive study is performed on the optical constants of dielectric tantalum pentoxide (Ta₂O₅) and hafnium oxide (HfO₂) thin films from visible to the far infrared using spectroscopic methods. These materials have broad applications in metallo-dielectric multilayers, anti-reflection coatings, and coherent emitters based on photonic crystal structures, especially at high temperatures since both materials have melting points above 2000 K. The dielectric functions of HfO₂ and Ta₂O₅ obtained from this work may facilitate future design of devices with these materials. A parametric study of near-field TPV performance using a backside reflecting mirror is also performed. Currently proposed near-field TPV devices have been shown to have increased power throughput compared to their far-field counterparts, but whose conversion efficiencies are lower than desired. This is due to their low quantum efficiency caused by recombination of minority carriers and the waste of sub-bandgap radiation. The efficiency may be improved by adding a gold mirror as well as by reducing the surface recombination velocity, as demonstrated in this thesis. The analysis of the near-field TPV and proposed methods may facilitate the development or high-efficiency energy harvesting devices. Many near-field devices may eventually utilize metallo-dielectric structures which exhibit unique properties such as negative refraction due to their hyperbolic isofrequency contour. These metamaterials are also called indefinite materials because of their ability to support propagating waves with large lateral wavevectors, which can result in enhanced near-field radiative heat transfer. The energy streamlines in such structures are studied for the first time. Energy streamlines illustrate the flow of energy through a structure when the fields are evanescent and energy propagation is not ray like. The energy streamlines through two semi-infinite uniaxially anisotropic effective medium structures, separated by a small vacuum gap, are modeled using the Green’s function. The lateral shift and penetration depth are calculated from the streamlines and shown to be relatively large compared to the vacuum gap dimension. The study of energy streamlines in hyperbolic metamaterials helps understand the near-field energy propagation on a fundamental level.
|
Page generated in 0.2612 seconds