• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Taphonomy of cervids of a Southern Oregon coast site using scanning electron microscopy and X-ray diffraction

Bodman, Susannah L. 24 June 2002 (has links)
One taphonomic problem plaguing archaeologists and physical anthropologists, whether their research is in North American cultures or hominid sites in Africa, is the difficulty in distinguishing bone altered by burning and heating from bone altered by soil processes. Archaeologists working to understand the recent prehistory of the Southern Oregon Coast face the same challenge. Two relatively new tools were investigated to determine their usefulness to resolving this problem. These are scanning electron microscopy (SEM) and X-ray diffraction (XRD). SEM has been well-tested in African sites and experimental studies to identify hominid-created cut marks on bone and to reconstruct heating temperatures of burnt bone. However, SEM and its ability to sample chemistry, as well as XRD's ability to detect diagentic alteration in bone minerals, have not been tested on material from coastal Oregon. The purpose of this research was: (1) to test these methods to see whether they could distinguish between burning and soil alteration, using cervid bone from site 35CS43 near Bandon, Ore., as a test sample, and (2) to see whether the result, paired with archaeological, ethnographic, taphonomic and faunal evidence, could be used to understand how the Coquille were procuring, processing and cooking cervids as insights into their adaptation. The outcome suggests that SEM and XRD, without use of other evidence, are unable to distinguish between burning and soil alteration because the similarities between the two lie not only in changes to the bone's macrostructure (discoloration) but also in bone chemistry, where it was hoped differences could be found. However, these techniques, when paired with the other lines of evidence, did provide insights in understanding the taphonomy and the Coquille's use of cervids - the interaction of bone and soil; the extent of mimicry between burning and soil alteration; and ultimately that discoloration of cervid bone at 35CS43 was likely due to soil alteration, that burning as the result of fire roasting was most likely not occurring at the site, and that the Coquille employed other methods of cooking. / Graduation date: 2003
2

Biostratigraphy, taphonomy, and paleoecology of vertebrates from the Sucker Creek Formation (Miocene) of southeastern Oregon.

Downing, Kevin Francis. January 1992 (has links)
The Sucker Creek Formation exposures at Devils Gate in southeastern Oregon have yielded a significant small mammal fauna of at least thirty small mammal taxa from five stratigraphic horizons. The mammal-bearing portion of the Devils Gate section is more than 200 m thick. Fossil mammals occur in lacustrine and marginal lacustrine deposits lower in the section and occur in overbank and paleosol deposits higher in the section. ⁴⁰Ar/³⁹Ar single-crystal laser-fusion dates on three Devils Gate ashes shows that the age of the mammal-bearing sequence at Devils Gate spans the late early Barstovian land-mammal age with possible overlap into the late Barstovian, as currently defined. Duration of the entire mammal-bearing portion of the Devils Gate section was less than a million years. Both a new ash date from the type section and biostratigraphic correlations between Devils Gate and the type section support considerable temporal overlap between the two exposures. The Devils Gate Local Fauna includes several new taxa: a phyllostomatid bat; two "flying squirrels", Petauristodon sp. A and Petauristodon sp. B; and an eomyid rodent, Leptodontomys sp. A. Several fossil occurrences represent the first record of a taxon in the northern Great Basin and/or in the Barstovian land-mammal age, including: Blackia sp., Schaubeaumys grangeri, Protospermophilus quatalensis, and Pseudadjidaumo stirtoni. The Stagestop locality produced two new taxa, Copemys sp. aff C. esmeraldensis and Mystipterus sp. The Stagestop local fauna is Clarendonian in age. Concretions are an important source of fossil mammals in exposures of the Sucker Creek Formation. Geochemical analyses show that concretions formed through a complex interaction between bone and surrounding volcaniclastic material. Although some superficial bone was consumed during concretion diagenesis, concretion development reduced the chance of prolonged chemical and physical destruction of bone during later soil development. The broad ecological diversity of small mammals recovered from Devils Gate supports an interpretation of the local paleoecology as a mosaic of grassland, forest, and pond/lake-bank environments. Sequential small mammal faunas across a prominent ash event show a generally stable composition with no pronounced ecomorphic differences in pre- and post-volcanic disturbance intervals. Therefore, small mammals do not show analogous ecological patterns to disturbance-driven plant successions in the Sucker Creek Formation. I infer that the local ecosystem recovered from volcanic blasts at a temporal scale below the resolution of time-averaged, post-disturbance paleosols.

Page generated in 0.0532 seconds