• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonparametric estimation of risk neutral density

DJOSSABA, ADJIMON MARCEL 10 1900 (has links)
Ce mémoire vise à estimer la densité neutre au risque (Risk neutral density (RND) en anglais) par une approche non paramétrique tout en tenant compte de l’endogénéité. Les prix transversaux des options européennes sont utilisés pour l’estimation. Le modèle principal considéré est la régression linéaire fonctionnelle. Nous montrons comment utiliser des variables instrumentales dans ce modèle pour corriger l’endogénéité. En outre, nous avons intégré des variables instrumentales dans le modèle approximant le RND par l’utilisation des fonctions d’Hermite à des fins de comparaison des résultats. Pour garantir un estimateur stable, nous utilisons la technique de régularisation de Tikhonov. Ensuite, nous effectuons des simulations de Monte-Carlo pour étudier l’impact des différents types de distribution RND sur les résultats obtenus. Plus précisément, nous analysons une distribution de mélange lognormale et une distribution de smile de Black-Scholes. Les résultats des simulations démontrent que l’estimateur utilisant des variables instrumentales pour corriger l’endogénéité est plus performant que l’alternative qui ne les utilise pas. En outre, les résultats de la distribution de smile de Black-Scholes sont plus performants que ceux de la distribution de mélange log-normale. Enfin, S&P 500 options sont utilisées pour une application de l’estimateur. / This thesis aims to estimate the risk-neutral density (RND) through a non-parametric approach while accounting for endogeneity. The cross-sectional prices of European options are used for the estimation. The primary model under consideration is functional linear regression. We have demonstrated the use of instrumental variables in this model to address endogeneity. Additionally, we have integrated instrumental variables into the model approximating RND through the use of Hermite functions for the purpose of result comparison. To ensure a stable estimator, we employ the Tikhonov regularization technique. Following this, we conduct Monte- Carlo simulations to investigate the impact of different RND distribution types on the obtained results. Specifically, we analyze a lognormal mixture distribution and a Black-Scholes smile distribution. The simulation results demonstrate that the estimator utilizing instrumental variables to adjust for endogeneity outperforms the non-adjusted alternative. Additionally, outcomes from the Black-Scholes smile distribution exhibit superior performance compared to those from the log-normal mixture distribution. Finally, S&P 500 options are used for an application of the estimator.

Page generated in 0.1576 seconds