• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Airspace analysis and design by data aggregation and lean model synthesis

Popescu, Vlad M. 20 September 2013 (has links)
Air traffic demand is growing. New methods of airspace design are required that can enable new designs, do not depend on current operations, and can also support quantifiable performance goals. The main goal of this thesis is to develop methods to model inherent safety and control cost so that these can be included as principal objectives of airspace design, in support of prior work which examines capacity. The first contribution of the thesis is to demonstrate two applications of airspace analysis and design: assessing the inherent safety and control cost of the airspace. Two results are shown, a model which estimates control cost depending on autonomy allocation and traffic volume, and the characterization of inherent safety conditions which prevent unsafe trajectories. The effects of autonomy ratio and traffic volume on control cost emerge from a Monte Carlo simulation of air traffic in an airspace sector. A maximum likelihood estimation identifies the Poisson process to be the best stochastic model for control cost. Recommendations are made to support control-cost-centered airspace design. A novel method to reliably generate collision avoidance advisories, in piloted simulations, by the widely-used Traffic Alert and Collision Avoidance System (TCAS) is used to construct unsafe trajectory clusters. Results show that the inherent safety of routes can be characterized, determined, and predicted by relatively simple convex polyhedra (albeit multi-dimensional and involving spatial and kinematic information). Results also provide direct trade-off relations between spatial and kinematic constraints on route geometries that preserve safety. Accounting for these clusters thus supports safety-centered airspace design. The second contribution of the thesis is a general methodology that generalizes unifying principles from these two demonstrations. The proposed methodology has three steps: aggregate data, synthesize lean model, and guide design. The use of lean models is a result of a natural flowdown from the airspace view to the requirements. The scope of the lean model is situated at a level of granularity that identifies the macroscopic effects of operational changes on the strategic level. The lean model technique maps low-level changes to high-level properties and provides predictive results. The use of lean models allows the mapping of design variables (route geometry, autonomy allocation) to design evaluation metrics (inherent safety, control cost).
2

Understanding conflict-resolution taskload: implementing advisory conflict-detection and resolution algorithms in an airspace

Vela, Adan Ernesto 14 November 2011 (has links)
From 2010 to 2030, the number of instrument flight rules aircraft operations handled by Federal Aviation Administration en route traffic centers is predicted to increase from approximately 39 million flights to 64 million flights. The projected growth in air transportation demand is likely to result in traffic levels that exceed the abilities of the unaided air traffic controller in managing, separating, and providing services to aircraft. Consequently, the Federal Aviation Administration, and other air navigation service providers around the world, are making several efforts to improve the capacity and throughput of existing airspaces. Ultimately, the stated goal of the Federal Aviation Administration is to triple the available capacity of the National Airspace System by 2025. In an effort to satisfy air traffic demand through the increase of airspace capacity, air navigation service providers are considering the inclusion of advisory conflict-detection and resolution systems. In a human-in-the-loop framework, advisory conflict-detection and resolution decision-support tools identify potential conflicts and propose resolution commands for the air traffic controller to verify and issue to aircraft. A number of researchers and air navigation service providers hypothesize that the inclusion of combined conflict-detection and resolution tools into air traffic control systems will reduce or transform controller workload and enable the required increases in airspace capacity. In an effort to understand the potential workload implications of introducing advisory conflict-detection and resolution tools, this thesis provides a detailed study of the conflict event process and the implementation of conflict-detection and resolution algorithms. Specifically, the research presented here examines a metric of controller taskload: how many resolution commands an air traffic controller issues under the guidance of a conflict-detection and resolution decision-support tool. The goal of the research is to understand how the formulation, capabilities, and implementation of conflict-detection and resolution tools affect the controller taskload (system demands) associated with the conflict-resolution process, and implicitly the controller workload (physical and psychological demands). Furthermore this thesis seeks to establish best practices for the design of future conflict-detection and resolution systems. To generalize conclusions on the conflict-resolution taskload and best design practices of conflict-detection and resolution systems, this thesis focuses on abstracting and parameterizing the behaviors and capabilities of the advisory tools. Ideally, this abstraction of advisory decision-support tools serves as an alternative to exhaustively designing tools, implementing them in high-fidelity simulations, and analyzing their conflict-resolution taskload. Such an approach of simulating specific conflict-detection and resolution systems limits the type of conclusions that can be drawn concerning the design of more generic algorithms. In the process of understanding conflict-detection and resolution systems, evidence in the thesis reveals that the most effective approach to reducing conflict-resolution taskload is to improve conflict-detection systems. Furthermore, studies in the this thesis indicate that there is significant flexibility in the design of conflict-resolution algorithms.

Page generated in 0.0287 seconds