• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite Element Analysis of Adiabatic Shear Bands in Impact and Penetration Problems

Stevens, John Boyet 22 November 1996 (has links)
We study axisymmetric deformations of depleted uranium (DU) and tungsten heavy alloy (WHA) rods impacting at normal incidence both a rigid, planar target and a thick, deformable steel target. Each deformable material is modeled as elastic thermoviscoplastic; the flow stress increases with an increase in the effective plastic strain and effective plastic strain-rate but decreases with a rise in the temperature. An objective of this work is to ascertain when and where a shear band, defined as a narrow region of rapid, intense plastic deformation, forms in each material subject to impact loading. The Taylor impact simulations show that shear bands form earlier in WHA than in DU for the material parameters used. In the penetration simulations, shear bands form continuously in the ejecta of the DU penetrator while only one shear band occurs in the WHA ejecta followed by more uniform deformations. Note: In order to view the computer animations referenced in this thesis, one must have a QuickTime movie player and download the files named Ujce.mov Uz2e.mov Uz3e.mov Wjce.mov Wz2e.mov and Wz3e.mov from the same directory the "pdf" file resides in. / Master of Science
2

A numerical platform for the identification of dynamic non-linear constitutive laws using multiple impact tests : application to metal forming and machining

Ming, Lu 28 March 2018 (has links) (PDF)
The main concern of this thesis is to propose a new inverse identification procedure applied to metal forming and machining situations, which can provide an appropriate parameters set for any elastoplastic constitutive law following J_{2} plasticity and isotropic hardening, by evaluating the correlation between the experimental and numerical responses. Firstly the identification program has been developed, which combines the Levenberg-Marquardt algorithm and the Data processing methods to optimize the constitutive parameters. In terms of experimentation, dynamic compression and tensile tests have been conducted. The final deformed shape of specimens, which relies on a post-mortem analysis, has been selected as the observation quantity. As for the numerical simulation, the numerical models of the same experimental procedure have been built with the finite element software Abaqus/Explicit in order to provide numerical responses. A numerical algorithm has been proposed for the implementation of user defined elastoplastic constitutive laws in Abaqus/Explicit.
3

The chemical and mechanical behaviors of polymer / reactive metal systems under high strain rates

Shen, Yubin 27 August 2012 (has links)
As one category of energetic materials, impact-initiated reactive materials are able to release a high amount of stored chemical energy under high strain rate impact loading, and are used extensively in civil and military applications. In general, polymers are introduced as binder materials to trap the reactive metal powders inside, and also act as an oxidizing agent for the metal ingredient. Since critical attention has been paid on the metal / metal reaction, only a few types of polymer / reactive metal interactions have been studied in the literature. With the higher requirement of materials resistant to different thermal and mechanical environments, the understanding and characterization of polymer / reactive metal interactions are in great demand. In this study, PTFE (Polytetrafluoroethylene) 7A / Ti (Titanium) composites were studied under high strain rates by utilizing the Taylor impact and SHPB tests. Taylor impact tests with different impact velocities, sample dimensions and sample configurations were conducted on the composite, equipped with a high-speed camera for tracking transient images during the sudden process. SHPB and Instron tests were carried out to obtain the stress vs. strain curves of the composite under a wide range of strain rates, the result of which were also utilized for fitting the constitutive relations of the composite based on the modified Johnson-Cook strength model. Thermal analyses by DTA tests under different flow rates accompanied with XRD identification were conducted to study the reaction mechanism between PTFE 7A and Ti when only heat was provided. Numerical simulations on Taylor impact tests and microstructural deformations were also performed to validate the constitutive model built for the composite system, and to investigate the possible reaction mechanism between two components. The results obtained from the high strain rate tests, thermal analyses and numerical simulations were combined to provide a systematic study on the reaction mechanism between PTFE and Ti in the composite systems, which will be instructive for future energetic studies on other polymer / reactive metal systems.
4

Dynamic and Quasi-Static Mechanical Properties of Fe-Ni Alloy Honeycomb

Clark, Justin Lewis 12 April 2004 (has links)
Several metal honeycombs, termed Linear Cellular Alloys (LCAs), were fabricated via a paste extrusion process and thermal treatment. Two Fe-Ni based alloy compositions were evaluated. Maraging steel and Super Invar were chosen for their compatibility with the process and the wide range of properties they afforded. Cell wall material was characterized and compared to wrought alloy specifications. The bulk alloy was found to compare well with the more conventionally produced wrought product when porosity was taken into account. The presence of extrusion defects and raw material impurities were shown to degrade properties with respect to wrought alloys. The performance of LCAs was investigated for several alloys and cell morphologies. The results showed that out-of-plane properties exceeded model predictions and in-plane properties fell short due to missing cell walls and similar defects. Strength was shown to outperform several existing cellular metals by as much as an order of magnitude in some instances. Energy absorption of these materials was shown to exceed 150 J/cc at strains of 50% for high strength alloys. Finally, the suitability of LCAs as an energetic capsule was investigated. The investigation found that the LCAs added significant static strength and as much as three to five times improvement in the dynamic strength of the system. More importantly, it was shown that the pressures achieved with the LCA capsule were significantly higher than the energetic material could achieve alone. High pressures, approaching 3 GPa, coupled with the fragmentation of the capsule during impact increased the likelihood of initiation and propagation of the energetic reaction. This multi-functional aspect of the LCA makes it a suitable capsule material.
5

Taylor Impact Test and Penetration of Reinforced Concrete Targets by Cylindrical Composite Rods

Ballew, Wesley D. 12 August 2004 (has links)
We use the three-dimensional finite element code DYNA3D to analyze two problems: (a) the normal impact of a cylindrical monolithic or composite rod against a smooth flat rigid target, (commonly known as the Taylor impact test), and (b) the penetration of composite and monolithic steel cylindrical rods into reinforced concrete targets. The composite rod is made of either a steel or copper shell enclosing a ceramic. The ceramic and the steel are assumed to fail at a critical value of the effective plastic strain, whereas no failure is considered in the copper. The thermoviscoplastic response of steel and copper is modeled by the Johnson-Cook relation and the ceramic and concrete are assumed to be elastic-plastic. Values of material parameters in the constitutive relation for the reinforced concrete (RC) are derived by the rule of mixtures. Failure of a material is simulated by the element erosion technique for ceramic and steel, and element erosion along with stiffness reduction for the RC. The effect of the angle of obliquity of impact on the damage induced in the target is ascertained. For the solid cylindrical copper rod impacting a smooth flat rigid target, the time history of the deformed length and the axial variation of the final diameter are found to match well with the experimental findings. For the composite rod, the diameter of the deformed impacted surface, the shape and size of the mushroomed region and the volume fraction of the failed ceramic material strongly depend upon the impact speed, the shell wall thickness and the thickness of the solid copper rod at the front end. Some composite cylindrical rods impacting at normal incidence RC targets were found to buckle during the penetration process in the sense that their outer diameter at a cross-section close to the impacted end increased by at least 20%. For steel penetrators, the damage experienced increased as the nose shape got blunter and the angle of obliquity became larger whereas the damage induced to the target only increased with penetrator bluntness. / Master of Science
6

A numerical platform for the identification of dynamic non-linear constitutive laws using multiple impact tests : application to metal forming and machining / Une plate-forme numérique pour l'identification des lois de comportement dynamiques non linéaires à l'aide d'essais d'impact multiples

Ming, Lu 28 March 2018 (has links)
Le travail principal de cette thèse consiste à proposer une nouvelle procédure d'identification inverse appliquée aux situations de mise en forme et d'usinage des métaux, qui peut fournir un ensemble de paramètres appropriés pour toute loi constitutive elastoplastique suivant le modèle de plasticité de type J_{2} avec écrouissage isotrope, en évaluant la corrélation entre les réponses expérimentales et numériques. En premier lieu, un programme d'identification a été développé, en combinant l'algorithme de Levenberg-Marquardt et des méthodes de traitement de données pour identifier les paramètres constitutifs. En termes d'expérimentation, des essais de compression et de traction dynamiques ont été effectués. La forme finale déformée des spécimens, qui repose sur une analyse post-mortem, a été choisie comme quantité d'observation. Comme pour la simulation numérique, des modèles numériques de ces mêmes procédures expérimentales ont été construits en utilisant le code éléments finis Abaqus/Explicit afin de fournir des réponses numériques. Un algorithme numérique a été proposé pour l'implémentation de lois constitutives elastoplastiques définies par l'utilisateur dans Abaqus/Explicit. / The main concern of this thesis is to propose a new inverse identification procedure applied to metal forming and machining situations, which can provide an appropriate parameters set for any elastoplastic constitutive law following J_{2} plasticity and isotropic hardening, by evaluating the correlation between the experimental and numerical responses. Firstly the identification program has been developed, which combines the Levenberg-Marquardt algorithm and the Data processing methods to optimize the constitutive parameters. In terms of experimentation, dynamic compression and tensile tests have been conducted. The final deformed shape of specimens, which relies on a post-mortem analysis, has been selected as the observation quantity. As for the numerical simulation, the numerical models of the same experimental procedure have been built with the finite element software Abaqus/Explicit in order to provide numerical responses. A numerical algorithm has been proposed for the implementation of user defined elastoplastic constitutive laws in Abaqus/Explicit.

Page generated in 0.0291 seconds