• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teichmuller space of surfaces and their parametrizations.

January 2013 (has links)
本論文介紹Teichmuller 空間的參數化方法。我們會就此題目會作一歷史回顧,然後介紹Fenchel-Nielsen的參數化方法,最後集中討論在緊密且有界之曲面上的Teichmuller 空間以六角形分割之參數化方法。 / This thesis is an exposition of different parametrizations of the Teichmuller space. We will give a historical review on this subject, and in particular introduce the Fenchel-Nielsen coordinate. Our main focus would be the cellular decomposition method to parametrize the Teichmuller spaces of compact surface with boundary. / Detailed summary in vernacular field only. / Wong, Yun Shun Matthias. / "October 2012." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 42-43). / Abstracts also in Chinese. / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Teichmüller Space --- p.4 / Chapter 2.1 --- Definition of Teichmüller Space --- p.4 / Chapter 2.2 --- Historical review --- p.6 / Chapter 3 --- Fenchel-Nielsen Coordinate --- p.10 / Chapter 4 --- Cellular Decomposition Method --- p.18 / Chapter 4.1 --- Ideal Triangulation --- p.19 / Chapter 4.2 --- Edge Invariant --- p.22 / Chapter 4.2.1 --- E-Invariant of Colored Hexagon --- p.23 / Chapter 4.3 --- E-coordinate and its Generalization --- p.24 / Chapter 4.4 --- Edge Path and Edge Cycle --- p.26 / Chapter 4.5 --- Parametrization Theorems --- p.26 / Chapter 4.6 --- Discussion on the Results --- p.30 / Chapter 4.7 --- The Variational Proof of Theorem 4.8 --- p.32 / Chapter 4.7.1 --- Overview of the Proof --- p.32 / Chapter 4.7.2 --- The Energy Function on Hexagon --- p.35 / Chapter 4.7.3 --- The Energy Function on Length Structure and the Proof of Theorem 4.8 --- p.37 / Bibliography --- p.42
2

Surface registration using quasi-conformal Teichmüller theory and its application to texture mapping. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Lam, Ka Chun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 64-68). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese.
3

Survey on the canonical metrics on the Teichmüller spaces and the moduli spaces of Riemann surfaces.

January 2010 (has links)
Chan, Kin Wai. / "September 2010." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 103-106). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.8 / Chapter 2 --- Background Knowledge --- p.13 / Chapter 2.1 --- Results from Riemann Surface Theory and Quasicon- formal Mappings --- p.13 / Chapter 2.1.1 --- Riemann Surfaces and the Uniformization The- orem --- p.13 / Chapter 2.1.2 --- Fuchsian Groups --- p.15 / Chapter 2.1.3 --- Quasiconformal Mappings and the Beltrami Equation --- p.17 / Chapter 2.1.4 --- Holomorphic Quadratic Differentials --- p.20 / Chapter 2.1.5 --- Nodal Riemann Surfaces --- p.21 / Chapter 2.2 --- Teichmuller Theory --- p.24 / Chapter 2.2.1 --- Teichmiiller Spaces --- p.24 / Chapter 2.2.2 --- Teichmuller's Distance --- p.26 / Chapter 2.2.3 --- The Bers Embedding --- p.26 / Chapter 2.2.4 --- Teichmuller Modular Groups and Moduli Spaces of Riemann Surfaces --- p.27 / Chapter 2.2.5 --- Infinitesimal Theory of Teichmiiller Spaces --- p.28 / Chapter 2.2.6 --- Boundary of Moduli Spaces of Riemann Sur- faces --- p.29 / Chapter 2.3 --- Schwarz-Yau Lemma --- p.30 / Chapter 3 --- Classical Canonical Metrics on the Teichnmuller Spaces and the Moduli Spaces of Riemann Surfaces --- p.31 / Chapter 3.1 --- Finsler Metrics and Bergman Metric --- p.31 / Chapter 3.1.1 --- Definitions and Properties of the Metrics --- p.32 / Chapter 3.1.2 --- Equivalences of the Metrics --- p.33 / Chapter 3.2 --- Weil-Petersson Metric --- p.36 / Chapter 3.2.1 --- Definition and Properties of the Weil-Petersson Metric --- p.36 / Chapter 3.2.2 --- Results about Harmonic Lifts --- p.37 / Chapter 3.2.3 --- Curvature Formula for the Weil-Petersson Met- ric --- p.41 / Chapter 4 --- Kahler Metrics on the Teichmiiller Spaces and the Moduli Spaces of Riemann Surfaces --- p.42 / Chapter 4.1 --- McMullen Metric --- p.42 / Chapter 4.1.1 --- Definition of the McMullen Metric --- p.42 / Chapter 4.1.2 --- Properties of the McMullen Metric --- p.43 / Chapter 4.1.3 --- Equivalence of the McMullen Metric and the Teichmuller Metric --- p.45 / Chapter 4.2 --- Kahler-Einstein Metric --- p.50 / Chapter 4.2.1 --- Existence of the Kahler-Einstein Metric --- p.50 / Chapter 4.2.2 --- A Conjecture of Yau --- p.50 / Chapter 4.3 --- Ricci Metric --- p.51 / Chapter 4.3.1 --- Definition of the Ricci Metric --- p.51 / Chapter 4.3.2 --- Curvature Formula of the Ricci Metric --- p.53 / Chapter 4.4 --- The Asymptotic Behavior of the Ricci Metric --- p.61 / Chapter 4.4.1 --- Estimates on the Asymptotics of the Ricci Metric --- p.61 / Chapter 4.4.2 --- Estimates on the Curvature of the Ricci Metric --- p.83 / Chapter 4.5 --- Perturbed Ricci Metric --- p.92 / Chapter 4.5.1 --- Definition and the Curvature Formula of the Perturbed Ricci Metric --- p.92 / Chapter 4.5.2 --- Estimates on the Curvature of the Perturbed Ricci Metric --- p.93 / Chapter 4.5.3 --- Equivalence of the Perturbed Ricci Metric and the Ricci Metric --- p.96 / Chapter 5 --- Equivalence of the Kahler Metrics on the Teichmuller Spaces and the Moduli Spaces of Riemann Surfaces --- p.98 / Chapter 5.1 --- Equivalence of the Ricci Metric and the Kahler-Einstein Metric --- p.98 / Chapter 5.2 --- Equivalence of the Ricci Metric and the McMullen Metric --- p.99 / Bibliography --- p.103
4

Geometry of teichmüller spaces.

January 1994 (has links)
by Wong Chun-fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 81-82). / Chapter CHAPTER0 --- Introduction --- p.1 / Chapter CHAPTER1 --- Teichmuller Space of genus g --- p.5 / Chapter 1.1. --- Teichmiiller Space of genus g / Chapter 1.2. --- Fuchsian Model and Discrete subgroup of Aut(H) / Chapter 1.3. --- Fricke Space / Chapter CHAPTER2 --- Hyperbolic Geometry and Fenchel-Nielsen Coordinates --- p.14 / Chapter 2.1. --- Poincare Metric and Hyperbolic Geometry / Chapter 2.2. --- Fenchel-Nielsen Coordinates / Chapter 2.3. --- Fricke-Klein Embedding / Chapter CHAPTER3 --- Quasiconformal Mappings --- p.23 / Chapter 3.1. --- Definitions / Chapter 3.2. --- Existence Theorems on Quasiconformal Mappings / Chapter 3.3. --- Dependence on Beltrami Coefficients / Chapter CHAPTER4 --- Teichmuller Spaces --- p.37 / Chapter 4.1. --- Analytic Construction of Teichmiiller Spaces / Chapter 4.2. --- Teichmiiller mapping and Teichmiiller Theorem / Chapter 4.3. --- Teichmiiller Uniqueness Theorem / Chapter CHAPTER5 --- Complex Analytic Theory of Teichmiiller Spaces --- p.50 / Chapter 5.1. --- Bers' Embedding and the complex structure of Teichmiiller Space / Chapter 5.2. --- Invariance of Complex Structure of Teichmiiller Space / Chapter 5.3. --- Teichmiiller Modular Groups / Chapter 5.4. --- Classification of Teichmiiller Modular Transformations / Chapter CHAPTER6 --- Weil-Petersson Metric --- p.68 / Chapter 6.1. --- Petersson Scalar Product and Reproducing formula / Chapter 6.2. --- Infinitesimal Theory of Teichmuller Spaces / Chapter 6.3. --- Weil-Petersson Metric / BIBLIOGRAPHY --- p.81
5

On spaces of special elliptic n-gons / Sobre espaços de n-ágonos elípticos especiais

Franco, Felipe de Aguilar 01 August 2018 (has links)
We study relations between special elliptic isometries in the complex hyperbolic plane. A special elliptic isometry can be seen as a rotation around a fixed axis (a complex geodesic). Such an isometry is determined by specifying a nonisotropic point p (the polar point to the fixed axis) and a unitary complex number a, the angle of the isometry. Any relation between special elliptic isometries with rational angles gives rise to a representation H(k1;:::;kn) → PU(2;1), where H(k1;:::;kn) : = ⟨ r1; : : : ; rn ∣ rn : : : r1> = 1; rkii = 1 ⟩ and PU(2;1) stands for the group of orientation-preserving isometries of the complex hyperbolic plane. We denote by Rpα the special elliptic isometry determined by the nonisotropic point p and by the unitary complex number α. Relations of the form Rpnαn : : :Rp1α1 = 1 in PU(2;1), called special elliptic n-gons, can be modified by short relations known as bendings: given a product RqβRpα, there exists a one-parameter subgroup B : R → SU(2;1) such that B(s) is in the centralizer of Rqβ Rpα and RB(s)qβRB(s)pα = RqβRB(s)pα for every s ∈ R. Then, for each i = 1,...,n-1, we can change Rpi+1αi+1Rpiαi by RB(s)pi+1αi+1RB(s)piαi obtaining a new n-gon. We prove that the generic part of the space of pentagons with fixed angles and signs of points is connected by means of bendings. Furthermore, we describe certain length 4 relations, called f -bendings, and prove that the space of pentagons with fixed product of angles is connected by means of bendings and f -bendings. / Neste trabalho, estudamos relações entre isometrias elípticas especiais no plano hiperbólico complexo. Uma isometria elíptica especial pode ser vista como uma rotação em torno de um eixo fixo (uma geodésica complexa). Tal isometria é determinada especificando-se um ponto não-isotrópico p (o ponto polar do eixo fixo) bem como um número complexo unitário a (o ângulo da isometria). Qualquer relação entre isometrias elípticas especiais com ângulos racionais dá origem a uma representação H(k1;:::;kn) → PU(2;1), onde H(k1;:::;kn) : = ⟨ r1; : : : ; rn ∣ rn : : : r1 = 1; rkii = 1 ⟩ e PU(2;1) é o grupo de isometrias que preservam a orientação do plano hiperbólico complexo. Denotamos por Rpα a isometria elíptica especial determinada pelo ponto não-isotrópico p e pelo complexo unitário α. Relações da forma Rpnαn : : :Rp1α1 = 1 em PU(2;1), chamadas n-ágonos elípticos especiais, podem ser modificadas a partir de relações curtas conhecidas como bendings: dado um produto RqβRpα, existe um subgrupo uniparamétrico B : R → SU(2;1) tal que B(s) está no centralizador de RqβRpα e RB(s)qβRB(s)pα = RqβRpα para todo s ∈ R. Assim, para cada i = 1; : : : ;n-1, podemos mudar Rpi+1α+1Rpiαi por RB(s)pi+1α+1RB(s)piα+1RB(s)piαi obtendo um novo n-ágono. Provamos que a parte genérica do espaço de pentágonos com ângulos e sinais de pontos fixados é conexa por meio de bendings. Além disso, descrevemos certas relações de comprimento 4, os f -bendings, e provamos que o espaço de pentágonos com produto de ângulos fixado é conexo por meio de bendings e f -bendings.
6

On spaces of special elliptic n-gons / Sobre espaços de n-ágonos elípticos especiais

Felipe de Aguilar Franco 01 August 2018 (has links)
We study relations between special elliptic isometries in the complex hyperbolic plane. A special elliptic isometry can be seen as a rotation around a fixed axis (a complex geodesic). Such an isometry is determined by specifying a nonisotropic point p (the polar point to the fixed axis) and a unitary complex number a, the angle of the isometry. Any relation between special elliptic isometries with rational angles gives rise to a representation H(k1;:::;kn) → PU(2;1), where H(k1;:::;kn) : = ⟨ r1; : : : ; rn ∣ rn : : : r1> = 1; rkii = 1 ⟩ and PU(2;1) stands for the group of orientation-preserving isometries of the complex hyperbolic plane. We denote by Rpα the special elliptic isometry determined by the nonisotropic point p and by the unitary complex number α. Relations of the form Rpnαn : : :Rp1α1 = 1 in PU(2;1), called special elliptic n-gons, can be modified by short relations known as bendings: given a product RqβRpα, there exists a one-parameter subgroup B : R → SU(2;1) such that B(s) is in the centralizer of Rqβ Rpα and RB(s)qβRB(s)pα = RqβRB(s)pα for every s ∈ R. Then, for each i = 1,...,n-1, we can change Rpi+1αi+1Rpiαi by RB(s)pi+1αi+1RB(s)piαi obtaining a new n-gon. We prove that the generic part of the space of pentagons with fixed angles and signs of points is connected by means of bendings. Furthermore, we describe certain length 4 relations, called f -bendings, and prove that the space of pentagons with fixed product of angles is connected by means of bendings and f -bendings. / Neste trabalho, estudamos relações entre isometrias elípticas especiais no plano hiperbólico complexo. Uma isometria elíptica especial pode ser vista como uma rotação em torno de um eixo fixo (uma geodésica complexa). Tal isometria é determinada especificando-se um ponto não-isotrópico p (o ponto polar do eixo fixo) bem como um número complexo unitário a (o ângulo da isometria). Qualquer relação entre isometrias elípticas especiais com ângulos racionais dá origem a uma representação H(k1;:::;kn) → PU(2;1), onde H(k1;:::;kn) : = ⟨ r1; : : : ; rn ∣ rn : : : r1 = 1; rkii = 1 ⟩ e PU(2;1) é o grupo de isometrias que preservam a orientação do plano hiperbólico complexo. Denotamos por Rpα a isometria elíptica especial determinada pelo ponto não-isotrópico p e pelo complexo unitário α. Relações da forma Rpnαn : : :Rp1α1 = 1 em PU(2;1), chamadas n-ágonos elípticos especiais, podem ser modificadas a partir de relações curtas conhecidas como bendings: dado um produto RqβRpα, existe um subgrupo uniparamétrico B : R → SU(2;1) tal que B(s) está no centralizador de RqβRpα e RB(s)qβRB(s)pα = RqβRpα para todo s ∈ R. Assim, para cada i = 1; : : : ;n-1, podemos mudar Rpi+1α+1Rpiαi por RB(s)pi+1α+1RB(s)piα+1RB(s)piαi obtendo um novo n-ágono. Provamos que a parte genérica do espaço de pentágonos com ângulos e sinais de pontos fixados é conexa por meio de bendings. Além disso, descrevemos certas relações de comprimento 4, os f -bendings, e provamos que o espaço de pentágonos com produto de ângulos fixado é conexo por meio de bendings e f -bendings.
7

Surfaces de Cauchy polyédrales des espaces temps plats singuliers / Polyhedral Cauchy-surfaces of flat space-times

Brunswic, Léo 22 December 2017 (has links)
L'étude des espaces-temps plats singuliers munis d'une surface de Cauchy polyédrale est motivée par leur rôle de model jouet de gravité quantique proposé par Deser, Jackiw et 'T Hooft. Cette thèse porte sur les paramétrisations de certaines classes d'espaces-temps plat singuliers : les espaces-temps plats avec particules massives et BTZ Cauchy-compacts maximaux. Deux paramétrisations sont proposées, l'une reposant sur une extension du théorème de Mess aux espaces-temps plats avec BTZ et la surface de Penner-Epstein, l'autre reposant sur une généralisation du théorème d'Alexandrov aux espaces-temps plats avec particules massives et BTZ. Ce travail propose également une amorce de cadre théorique permettant de considérer des espaces-temps singuliers plus généraux. / The study of singular flat spacetimes with polyhedral Cauchy-surfaces is motivated by the quantum gravity toy model role they play in the seminal work of Deser, Jackiw and 'T Hooft. This thesis study parametrisations of classes of singular flat spacetimes : Cauchy-compact maximal flat spacetimes with massive and BTZ-like singularities. Two parametrisations are constructed. The first is based on an extension of Mess theorem to flat spacetimes with BTZ and Penner-Epstein convex hull construction. The second is based on a generalisation of Alexandrov polyhedron theorem to radiant Cauchy-compact flat spacetimes with massive and BTZ-like singularities. This work also initiate a wider theoretical background that encompass singular spacetimes.

Page generated in 0.0364 seconds