• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Hopf differential and harmonic maps between branched hyperbolic structures

Lamb, Evelyn 05 September 2012 (has links)
Given a surface of genus g with fundamental group π, a representation of π into PSL(2,R) is a homomorphism that assigns to each generator of π an element of P SL(2, R). The group P SL(2, R) acts on Hom(π, P SL(2, R)) by conjugation. Define therepresentationspaceRg tobethequotientspaceHom(π,PSL(2,R))\PSL(2,R). Associated to each representation ρ is a number e(ρ) called its Euler class. Goldman showed that the space Rg has components that can be indexed by Euler classes of rep- resentations, and that there is one component for each integer e satisfying |e| ≤ 2g−2. The two maximal components correspond to Teichmu ̈ller space, the space of isotopy classes of hyperbolic structures on a surface. Teichmu ̈ller space is known to be homeomorphic to a ball of dimension 6g − 6. The other components of Rg are not as well understood. The theory of harmonic maps between non-positively curved manifolds has been used to study Teichmu ̈ller space. Given a harmonic map between hyperbolic surfaces, there is an associated quadratic differential on the domain surface called the Hopf differential. Wolf, following Sampson, proved that via the Hopf differential, harmonic maps parametrize Teichmu ̈ller space. This thesis extends his work to the case of branched hyperbolic structures, which correspond to certain elements in non- maximal components of representation space. More precisely, a branched hyperbolic structure is a pair (M, σ|dz|2) where M is a compact surface of genus g and σ|dz|2 is a hyperbolic metric with integral order cone singularities at a finite number of points expressed in terms of a conformal parameter. Fix a base surface (M, σ|dz|2). For each target surface (M, ρ|dw|2) with the same number and orders of cone points as (M,σ|dz|2), there is a unique harmonic map w : (M,σ|dz|2) → (M,ρ|dw|2) homotopic to the identity that fixes the cone points of M pointwise. Thus we may define another map from the space of branched hyperbolic structures with the same number and orders of cone points to the space of meromorphic quadratic differentials on the base surface M. This map, Φ, takes the harmonic map w associated with a metric ρ|dw|2 to the Hopf differential of w. This thesis shows that the map Φ is injective.
2

Compactification géométrique de l'espace de modules des structures de demi-translation sur une surface / Geometric compactification of the moduli space of half-translation structures on a surface

Morzadec, Thomas 11 December 2015 (has links)
L'objectif de la thèse est de construire une compactification géométrique de l'espace des structures de demi-translation sur une surface S compacte, connexe, orientable, de genre au moins égal à 2. Il s’inscrit dans le très large thème d’étude des déformations de structures géométriques sur les surfaces. Une structure de demi-translation sur S est une métrique localement euclidienne (de courbure constante nulle) sur S, avec des singularités coniques d'angles k pi, avec k un entier et k>2, telle que l'holonomie de tout lacet lisse de S, disjoint des singularités, est Id ou -Id.Je définis l'ensemble des structures mixtes sur S, qui sont des structures arborescentes (au sens de Drutu-Sapir), équivariantes par le groupe fondamentalde S et CAT(0), obtenues par recollement de pièces par des arêtes, éventuellement réduites à des points, telles que l'espace obtenu par écrasement des pièces est un arbre réel simplicial (la plupart des arêtes ont une longueur non nulle), et les pièces sont ou bien des arbres réels, ou bien des revêtements universels de sous-surfaces (ouvertes) de S, munies de structures de demi-translation. Je munis l'espace Mix(Sigma) des (classes d'isométries équivariantes par le groupe fondamental de S) de structures mixtes sur S d'une topologie géométrique naturelle, appelée topologie de Gromov équivariante. Je montre alors, par des techniques d'ultralimites à la Gromov, que l'espace Flat(S) des (classes d'isotopie de) structures de demi-translation sur S, identifié à l’ensemble des structures de demi-translation équivariantes par le groupe fondamental de S sur le revêtement universel de S, est un ouvert dense de Mix(S), et que le projectifié PMix(S), muni de la topologie quotient, est compact. Le projectifié PMix(S) est donc une compactification du projectifié PFlat(S) de l'espace Flat(S) (qui s'identifie à l'espace des structure de demi-translation d'aire 1 sur S). / The goal of this thesis is to build a geometric compactification of the space of half-translation structures on a connected, compact surface S, with genus at least 2. It is a part of the wide thema of study of the deformations of metric structures on surfaces.A half-translation structure on S is a locally euclidean metric (with null constant curvature) on S, with conical singularities of angles k pi, with k an integer and k>2, such that the holonomy of every smooth curve of S, disjoint from the singularities, is contained in Id or -Id.I define the set of mixed structures on S, which are tree-graded spaces (in the sense of Drutu-Sapir), equivariant by the fundamental group of S and CAT(0), obtained by gluing some pieces by some edges, possibly reduced to a point, such that the space obtained by replacing the pieces by some points is a simplicialtree (most edges have a positive length), and the pieces are either some trees or some universal covers of (open) subsurfaces of S endowed with a half-translation structures. I endow the space Mix(S) of (classes of isometry equivariant by the fundamental group of S of) mixed structures on S with a natural geometric topology, called the Gromov equivariant topology. I show, by techniques using ultralimits "à la Gromov", that the space Flat(S) of (isotopy classes of) half-translation structures on S, identified with the set of half-translation structures on the universal cover of S which are equivariant for the fundamental group of S, is a dense and open subset of Mix(S), and the projectified space PMix(S) is compact. The projectified space PMix(S) is then a compactification of the projectified space PFlat(S) (which identifies with the space of half-translations structures of area 1 on S.

Page generated in 0.0372 seconds