• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Théorie de Teichmüller dynamique infinitésimale et domaines errants / Infinitesimal dynamical Teichmüller theory wandering domains

Astorg, Matthieu 09 July 2015 (has links)
Soit f une fraction rationnelle de degré d au moins 2. McMullen et Sullivan ont introduit l'espace de Teichmüller dynamique Teich(f), qui est une variété complexe de dimension au plus 2d-2 et qui paramétrise la classe de conjugaison quasiconforme de f dans l'espace des modules ratd via une application holomorphe F allant de Teich(f) dans ratd.Nous donnons une nouvelle construction élémentaire de Teich(f), et nous prouvonsque F est une immersion, ce qui répond à une question posée par McMullen et Sullivan.Ce dernier résultat nous permet d'obtenir des preuves simplifiées de résultats dus à Makienko et Levin sur la rigidité de f sous une hypothèse d'expansivité le long de l'orbite critique. Dans une seconde partie, nous construisons une famille d'exemples d'endomorphismes polynômiaux de P^2(C) ayant un domaine errant. Nos exemples sont des produits fibrés, de la forme (z,w) -> ( f(z) + aw, g(w)). De plus, on construira des exemples à coefficients réels où le domaine errant intersectera R^2. / Let f be a rational map of degree d at last 2. McMullen and Sullivan introduced the dynamical Teichmüller space Teich(f), which is a complex manifold of dimension at most 2d-2. It paramtrizes the quasiconformal conjugacy class of f in the moduli space ratdvia a holomorphic map F from Teich(f) to ratd. We give a new and elementary construction of Teich(f), and we prove that the parametrization F is an immersion, answering a question of McMullen and Sullivan. This last result enables us to give simplified proofs of rigidity results of Makienko and Levin under the assumption of expansion along the critical orbit. In a second part, we construct a family of examples of polynomial endomorphisms of¨P^2(C) with a wandering domain. Our examples are skew-products, of the form (z,w) -> (f(z)+aw, g(w)). Moreover, we will construct examples with real coefficients where the wandering domain intersects R^2.
2

Compactification géométrique de l'espace de modules des structures de demi-translation sur une surface / Geometric compactification of the moduli space of half-translation structures on a surface

Morzadec, Thomas 11 December 2015 (has links)
L'objectif de la thèse est de construire une compactification géométrique de l'espace des structures de demi-translation sur une surface S compacte, connexe, orientable, de genre au moins égal à 2. Il s’inscrit dans le très large thème d’étude des déformations de structures géométriques sur les surfaces. Une structure de demi-translation sur S est une métrique localement euclidienne (de courbure constante nulle) sur S, avec des singularités coniques d'angles k pi, avec k un entier et k>2, telle que l'holonomie de tout lacet lisse de S, disjoint des singularités, est Id ou -Id.Je définis l'ensemble des structures mixtes sur S, qui sont des structures arborescentes (au sens de Drutu-Sapir), équivariantes par le groupe fondamentalde S et CAT(0), obtenues par recollement de pièces par des arêtes, éventuellement réduites à des points, telles que l'espace obtenu par écrasement des pièces est un arbre réel simplicial (la plupart des arêtes ont une longueur non nulle), et les pièces sont ou bien des arbres réels, ou bien des revêtements universels de sous-surfaces (ouvertes) de S, munies de structures de demi-translation. Je munis l'espace Mix(Sigma) des (classes d'isométries équivariantes par le groupe fondamental de S) de structures mixtes sur S d'une topologie géométrique naturelle, appelée topologie de Gromov équivariante. Je montre alors, par des techniques d'ultralimites à la Gromov, que l'espace Flat(S) des (classes d'isotopie de) structures de demi-translation sur S, identifié à l’ensemble des structures de demi-translation équivariantes par le groupe fondamental de S sur le revêtement universel de S, est un ouvert dense de Mix(S), et que le projectifié PMix(S), muni de la topologie quotient, est compact. Le projectifié PMix(S) est donc une compactification du projectifié PFlat(S) de l'espace Flat(S) (qui s'identifie à l'espace des structure de demi-translation d'aire 1 sur S). / The goal of this thesis is to build a geometric compactification of the space of half-translation structures on a connected, compact surface S, with genus at least 2. It is a part of the wide thema of study of the deformations of metric structures on surfaces.A half-translation structure on S is a locally euclidean metric (with null constant curvature) on S, with conical singularities of angles k pi, with k an integer and k>2, such that the holonomy of every smooth curve of S, disjoint from the singularities, is contained in Id or -Id.I define the set of mixed structures on S, which are tree-graded spaces (in the sense of Drutu-Sapir), equivariant by the fundamental group of S and CAT(0), obtained by gluing some pieces by some edges, possibly reduced to a point, such that the space obtained by replacing the pieces by some points is a simplicialtree (most edges have a positive length), and the pieces are either some trees or some universal covers of (open) subsurfaces of S endowed with a half-translation structures. I endow the space Mix(S) of (classes of isometry equivariant by the fundamental group of S of) mixed structures on S with a natural geometric topology, called the Gromov equivariant topology. I show, by techniques using ultralimits "à la Gromov", that the space Flat(S) of (isotopy classes of) half-translation structures on S, identified with the set of half-translation structures on the universal cover of S which are equivariant for the fundamental group of S, is a dense and open subset of Mix(S), and the projectified space PMix(S) is compact. The projectified space PMix(S) is then a compactification of the projectified space PFlat(S) (which identifies with the space of half-translations structures of area 1 on S.

Page generated in 0.0812 seconds