• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AN XML SCHEMA FOR AIRBORNE TELEMETRY BASED ON THE IRIG TMATS STANDARD

Scardello, Mike, Harris, Jim, Downing, Bob 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / XML is a simple and powerful way to handle on data transfers between organizations, applications and/or computer systems. Currently, there is a significant effort within NASA to transition to XML vocabularies as the means of exchanging electronic data. XML can provide a useful way to transfer telemetry attributes data between customers and systems. The current standard for airborne telemetry data description is the Telemetry Attributes Transfer Standard (TMATS). TMATS is a well-defined, structured specification that will map into XML extremely well. This makes XML an excellent choice to supplement TMATS for the interchange of telemetry attribute information. The Western Aeronautical Test Range (WATR) at NASA Dryden Flight Research Center (DFRC) is defining an XML Schema that will be used in support of the WATR Integrated Next Generation System (WINGS). This paper describes this work in progress.
2

AN XML VOCABULARY FOR TMATS

Downing, Bob 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / XML is a simple, powerful way to agree on data transfers between organizations, applications and/or computer systems. XML was originally developed to separate data content definition from the display of data on a web page. XML is based on a subset of the Standardized General Markup Language (SGML), which means XML uses a tag-based syntax similar to Hyper Text Markup Language (HTML). Whereas HTML uses fixed tags to display data, XML uses custom designed tags to describe data. XML provides a simple, standard, portable, and flexible way to transfer data between applications. This could provide a useful way to transfer telemetry attributes data between customers and systems. Currently, there is not a significant amount of support for the use of the Telemetry Attributes Transfer Standard (TMATS). Telemetry vendors still use their own formats, customers maintain their own databases, and support facilities/ranges promote the use of their own implementations. TMATS was supposed to define a common ground to transfer data definitions, but the tools to TMATS have not come about. TMATS is a well defined, structured specification that maps into XML extremely well. Even though XML is a fairly new technology, there are already many tools available to support XML parsing with more becoming available. This makes XML an excellent choice to supplement TMATS for the interchange of telemetry attribute information. This paper provides an initial attempt at defining the language and structure for an XML vocabulary of TMATS.
3

Implementing an Open Setup Environment Across Multiple Vendor Products Using TMATS

Comperini, Robert G., Scardello, Michael A. 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / The Inter-Range Instrumentation Group (IRIG) introduced the Telemetry Attributes Transfer Standard (TMATS) in IRIG 106-93. This long needed standardization was designed to provide a common thread through which test programs could move from one test range to another without significant re-work in the setup environment. TMATS provides the definition of telemetry attributes and specifies the media and data format necessary to permit the ready transfer of the information required to setup telemetry receiving/processing functions at a test range. These attributes are defined as those parameters required by the receiving/processing system to acquire, process and display telemetry data received from a test item or source. As the telemetry vendor community develops more and more board level products designed to be integrated into various platforms such as Personal Computer (PC), VME, and VXI, the necessity of providing a setup environment, which is independent of a specific vendor product, becomes essential. An significant advantage of TMATS lies in its ability to provide a mechanism for setup of "multiple vendor systems" without the necessity of restructuring telemetry attribute information for each unique vendor's product. This paper describes the use of TMATS for the setup of a VXI based telemetry acquisition system containing board level products (including Antenna Control Units, RF Receivers, Combiners, Bit Synchronizers, PCM Decommutators, and PCM Simulators) from multiple vendors.
4

The Western Aeronautical Test Range Chapter 10 Tools

Knudtson, Kevin, Park, Alice, Downing, Bob, Sheldon, Jack, Harvey, Robert, Norcross, April 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / The Western Aeronautical Test Range (WATR) staff at the NASA Dryden Flight Research Center is developing a translation software called Chapter 10 Tools in response to challenges posed by post-flight processing data files originating from various on-board digital recorders that follow the Range Commanders Council Inter-Range Instrumentation Group (IRIG) 106 Chapter 10 Digital Recording Standard but use differing interpretations of the Standard. The software will read the date files regardless of the vendor implementation of the source recorder, displaying data, identifying and correcting errors, and producing a data file that can be successfully processed post-flight.

Page generated in 0.1196 seconds