• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Évaluation de l’influence de l’éclairement de croissance et de la température de surface des océans sur le rendement quantique de la fluorescence de la chlorophylle a induite par le soleil / The influence of growth irradiance and of the sea surface temperature on the quantum yield of Sun-induced fluorescence

Faucher, Marc-André January 2015 (has links)
Résumé : Le phytoplancton, un ensemble de microorganismes photosynthétiques, est responsable de près de la moitié de la production primaire nette planétaire. Malgré son importance primordiale dans le cycle du carbone et du support de la vie marine, personne n'est encore en mesure d’expliquer la distribution du rendement quantique apparent de la fluorescence de la chlorophylle, un paramètre intimement lié à la physiologie et à l'état de santé de ces organismes. Dans le but d'apporter des précisions quant au comportement du rendement quantique apparent de la fluorescence de la chlorophylle à l'échelle des océans, nous avons évalué l'influence d’un ensemble de paramètres environnementaux notamment l'éclairement de croissance et la température de surface des océans sur le rendement quantique apparent de la fluorescence de la chlorophylle. De plus, nous proposons une nouvelle façon de calculer l’éclairement de croissance à partir de l'éclairement photosynthétiquement utilisable (éclairement pondéré en fonction de l'absorption du phytoplancton), moyen entre la surface et la profondeur de la couche de mélange. L’éclairement photosynthétiquement utilisable est privilégié puisqu'il est plus représentatif que l'éclairement photosynthétiquement actif (éclairement total entre 400 et 700 nm) généralement utilisé dans le calcul de l’éclairement de croissance. Plutôt que de calculer le rendement quantique apparent de la fluorescence de la chlorophylle, ce qui est très complexe à faire de façon exacte en raison de multiples paramètres difficilement évaluables, nous calculons le χ [indice inférieur fluo], un indice équivalent, mais qui a l’avantage de ne pas faire des suppositions sur certains paramètres physiologiques et écologiques. Les résultats démontrent que le rendement quantique apparent de la fluorescence de la chlorophylle diminue quand l’éclairement de croissance augmente, ce qui suggère une augmentation de l’inhibition non photochimique de la fluorescence causée par une photoacclimation/photoadaptation du phytoplancton vivant dans un environnement d’éclairement important. Les résultats indiquent aussi que lorsque la température est sous 6°C l’impact sur le rendement quantique apparent de la fluorescence de la chlorophylle est significatif. Sous cette température, un groupe de pixels a été identifié pour lesquels le rendement quantique apparent de la fluorescence de la chlorophylle est essentiellement constant à des valeurs faibles. Ceci peut potentiellement pointer vers un plus large phénomène écosystémique/de communauté. Des simulations effectuées à partir d’une table de référence à trois dimensions (i.e., éclairement de croissance, température de surface des océans et concentration de chlorophylle) démontrent l’impact de ces paramètres sur le rendement quantique apparent de la fluorescence de la chlorophylle. Le modèle a répliqué avec succès certaines zones de fort et de faible rendement. Les divergences entre les données simulées et observées indiquent probablement la présence d’autres processus physiologiques indépendants de la température et de l’éclairement de croissance. / Abstract : The current generation of Earth-orbiting sensors allows us to measure Sun-induced chlorophyll fluorescence. Coupled with phytoplankton absorption and incident irradiance, it is possible to derive the apparent quantum yield of chlorophyll fluorescence. This information could be very helpful as the apparent quantum yield of chlorophyll fluorescence is influenced by algal photophysiology. Here we evaluate the influence of the growth irradiance and of the sea surface temperature on the apparent quantum yield of chlorophyll fluorescence. Results show that with increasing growth irradiance, the apparent quantum yield of chlorophyll fluorescence decreases, pointing to an increase in non-photochemical quenching due to photoacclimation/photoadaptation by phytoplankton in high light environments. The sea surface temperature below 6°C was shown to have a significant impact on the apparent quantum yield of chlorophyll fluorescence. Below this temperature, a group of pixels was identified for which the apparent quantum yield of chlorophyll fluorescence was essentially constant at low values. This could potentially point to a wider ecosystemic/community related phenomenon. Simulations with a three-dimensional lookup table (i.e., growth irradiance, sea surface temperature and chlorophyll concentration) demonstrate the impact of these parameters on the global distribution of the apparent quantum yield of chlorophyll fluorescence. The model successfully reproduced some zones of low and high yield. Departures from the predicted values are likely pointing to physiological processes that are independent of temperature and growth irradiance.
2

Textural-based methods for image superresolution : Application to Satellite-derived Sea Surface Temperature imagery / Méthodes stochastiques pour la super-résolution d'images texturées : Application à l'imagerie de télédétection satellitaire de la température de surface des océans

Boussidi, Brahim 18 October 2016 (has links)
La caractérisation des dynamiques de sous-mésoéchelle (<10km) à la surface de l'océan et leurs impacts sur les processus océaniques globaux sont des enjeux scientifiques majeurs. L'imagerie satellitaire est un outil essentiel dans ce contexte, qui présente toutefois des limitations liées aux instruments de télédétection. Dans le cas des images de température de surface des océans (SST), les mesures satellitaires des structures océaniques sont limitées par la résolution grossière des capteurs micro-ondes (~50km) d'une part, et par la sensibilité aux conditions climatiques (e.g., couverture nuageuse) des instruments de mesure infrarouge haute-résolution. Dans cette thèse, nous nous intéressons à l'analyse, la modélisation et la reconstruction des structures turbulentes haute-résolution capturées par imagerie satellitaire de SST, et proposons quatre contributions principales. Dans un premier temps, nous développons une méthode de filtrage conjointe Fourier-ondelettes pour le prétraitement d'artefacts géométriques dans les observations satellitaires infrarouges. Dans un deuxième temps, nous nous focalisons sur la caractérisation de la variabilité géométrique de champs de température de surface (SST) en utilisant des modèles de marches aléatoires appliqués aux lignes de niveaux. En particulier, nous considérons des processus aléatoires de type schramm Loewner (SLE). Nous nous intéressons ensuite à la modélisation stochastique des variabilités inter-échelles de champs de SST. Des modèles stochastiques de textures multivariées sont introduits. Ces modèles permettent de reproduire des propriétés statistiques et spectrales similaires à celles des données ayant servi à les calibrer. Nous développons ensuite des méthodes de super-résolution de champs de SST conditionnellement à une observation basse-résolution. Nous utilisons des modèles multivariés de textures formulés dans le domaine des ondelettes, en exploitant l'apprentissage d'à priori statistiques (i.e., covariances et covariances croisées) des différentes sous-bandes à partir d'images haute-résolution. Des contraintes supplémentaires imposées sur la phase de Fourier des différentes sous-bandes simulées permettent la reconstruction de structures géométriques marquées tels que les fronts. Nous démontrons la pertinence de la méthode proposée sur des images satellitaires de SST obtenues à partir du capteur Modis/Aqua. / The characterization of sub-mesoscale dynamics (<10 km) in the ocean surface and their impact on global ocean processes are major scientific issues. Satellite imagery is an essential tool within this framework. However, the use of remote sensing techniques still raise challenging. For instance, regarding Sea Surface Temperature (SST) images, satellite measurements of oceanic structures are limited by the coarse resolution of microwave sensors (~50km) on one hand, and by sensitivity to climatic conditions (eg., Cloud cover) of high-resolution infrared instruments on the other hand. In this thesis, we are interested in analysis, modeling and reconstruction of high-resolution turbulent structures captured by satellite SST imagery. In this context, we propose four main contributions. First, we develop a joint Fourier-Wavelet filtering method for the pre-processing of geometrical noises in satellite-based infrared observations, namely the striping noises. Secondly, we focus on the characterization of the geometric variability of sea surface temperature (SST) fields using random walk models applied to SST isolines. In particular, we consider the class of Schramm Loewner evolution curves (SLE). We then focus on the stochastic modeling of the cross-scale variabilities of SST fields. Stochastic multivariate texture-based models are introduced. These models are designed to reproduce several statistics and spectral properties that are observed on the data that are used to calibrate the model. We then develop our framework for stochastic super-resolution of SST fields conditionally to low-resolution observations. We use multivariate texture-based models formulated in the wavelet domain. These models exploit the formulation of statistical and spectral priors (i.e., covariances and cross-covariances) on wavelet subbands. These priors are directly learned from exemplar high-resolution images. Additional constraints imposed on the Fourier-phase of the different simulated subbands allow the reconstruction of coherent geometric structures such as the edge information. Our method is tested and validated using infrared high-resolution satellite SST images provided by Aqua Modis sensor.

Page generated in 0.1067 seconds