• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An Investigation of Capacity Fading of Manganese Spinels Stored at Elevated Temperature

Sano, Mitsuru, Inoue, Takao January 1998 (has links)
No description available.
12

Light Stability And The Effect Of Temperature On Mechanical Properties Of Polypropylene / Poly(ethylene-vinyl-acetate) Blends

Guclu, Mehmet 01 July 2007 (has links) (PDF)
The variation in properties of Polypropylene (PP) / Ethylene Vinyl Acetate (EVA) blends upon EVA content, temperature, and light stability were followed by using tensile testing, impact testing, and differential scanning calorimetry (DSC). Young&rsquo / s modulus of the blends decreased with increasing drawing temperature and EVA content. The stress at break values of the blends slightly increased with EVA whereas decreased with drawing temperature. The percent strain at break values of the blends were found to increase abruptly by increasing EVA content and drawing temperature. These changes in the mechanical properties are the indication of compatibility. The impact tests were performed only at 0&deg / C, 25&deg / C and the impact strength increased with the temperature and EVA content, but none of the samples were broken at higher testing temperatures. The effect of stabilizer was very obvious because stabilizer-free samples failed after 400 hours whereas, the samples with stabilizer resisted up to 750 hours. Elongation values of the samples decreased because of increasing brittleness by UV irradiation. We also observed chain stiffening effect by crosslinking in all samples upon UV irradiation. Thermal analysis of the blends of the drawn samples showed an increasing trend of crsytallinity with increasing drawing temperature. Increasing drawing temperature made polymer chains more flexible because of the increasing chain mobility. These flexible chains were then oriented in one direction during tensile testing and therefore uniaxial crystallization occurred. The morphology of impact and tensile tests samples were also analyzed by scanning electron microscope (SEM). The fibrillation of pure PP is higher than the fibrillation of the blends.
13

Radon escape from water

Mvelase, Mashinga Johannes January 2010 (has links)
<p>This thesis aims to measure the rate of radon loss from water in a systematic way. The dependence on surface area, temperature and concentration will be investigated. The experiments were done at UWC by creating radon using radium sources and then measuring the radon concentrations inside a vacuum chamber to obtain the speed of radon escape from the water. The results are compared to a model [Cal 2002] where the radon concentration in the air and hence the transfer rate is measured using a RAD7 radon detector. Since the equations cannot be solved analytically, a numerical solution is employed. The radon transfer velocity coefficient is found to be (1.9&plusmn / 0.5)&times / 10-6m/s. This value indicates that the escape of radon should not be a problem when a sample is open to the air for a minute or two.</p>
14

Investigation of Subgrade Moisture Flow Caused by Hydro-Thermal Gradients In Airfield Pavements

January 2017 (has links)
abstract: Recent research efforts have been directed to improve the quality of pavement design procedures by considering the transient nature of soil properties due to environmental and aging effects on pavement performance. The main purpose of this research study was to investigate the existence of subgrade soil moisture changes that may have arisen due to thermal and hydraulic gradients at the Atlantic City NAPTF and to evaluate their effect on the material stiffness and the California Bearing Ratio (CBR) strength parameter of the clay subgrade materials. Laboratory data showed that at the same water content, matric suction decreases with increasing temperature; and at the same suction, hydraulic conductivity increases with increasing temperature. Models developed, together with moisture/temperature data collected from 30 sensors installed in the test facility, yielded a maximum variation of suction in field of 155 psi and changes in hydraulic conductivity from 2.9E-9 m/s at 100% saturation to 8.1E-12 at 93% saturation. The maximum variation in temperature was found to be 20.8oC at the shallower depth and decreased with depth; while a maximum variation in moisture content was found to be 3.7% for Dupont clay and 4.4% for County clay. Models developed that predicts CBR as a function of dry density and moisture content yielded a maximum variation of CBR of 2.4 for Dupont clay and 2.9 for County clay. Additionally, models were developed relating the temperature with the bulk stress and octahedral stress applied on the subgrade for dual gear, dual tandem and triple tandem gear types for different tire loads. It was found that as the temperature increases the stresses increase. A Modified Cary and Zapata model was used for predicting the resilient modulus(Mr) of the subgrade. Using the models developed and the temperature/moisture changes observed in the field, the variation of suction, bulk and octahedral stresses were estimated, along with the resilient modulus for three different gear types. Results indicated that changes in Mr as large as 9 ksi occur in the soils studied due to the combined effect of external loads and environmental condition changes. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2017
15

Radon escape from water

Mvelase, Mashinga Johannes January 2010 (has links)
Magister Scientiae - MSc / This thesis aims to measure the rate of radon loss from water in a systematic way. The dependence on surface area, temperature and concentration will be investigated. The experiments were done at UWC by creating radon using radium sources and then measuring the radon concentrations inside a vacuum chamber to obtain the speed of radon escape from the water. The results are compared to a model [Cal 2002] where the radon concentration in the air and hence the transfer rate is measured using a RAD7 radon detector. Since the equations cannot be solved analytically, a numerical solution is employed. The radon transfer velocity coefficient is found to be (1.9±0.5)×10-6m/s. This value indicates that the escape of radon should not be a problem when a sample is open to the air for a minute or two. / South Africa
16

Nonlinear Analysis of Plane Frames Subjected to Temperature Changes

Garcilazo, Juan Jose 01 May 2015 (has links) (PDF)
In this study, methods for the geometric nonlinear analysis and the material nonlinear analysis of plane frames subjected to elevated temperatures are presented. The method of analysis is based on a Eulerian (co-rotational) formulation, which was developed initially for static loads, and is extended herein to include geometric and material nonlinearities. Local element force-deformation relationships are derived using the beam-column theory, taking into consideration the effect of curvature due to temperature gradient across the element cross-section. The changes in element chord lengths due to thermal axial strain and bowing due to the temperature gradient are also taken into account. This "beam-column" approach, using stability and bowing functions, requires significantly fewer elements per member (i.e. beam/column) for the analysis of a framed structure than the "finite-element" approach. A computational technique, utilizing Newton-Raphson iterations, is developed to determine the nonlinear response of structures. The inclusion of the reduction factors for the coefficient of thermal expansion, modulus of elasticity and yield strength is introduced and implemented with the use of temperature-dependent formulas. A comparison of the AISC reduction factor equations to the Eurocode reduction factor equations were found to be in close agreement. Numerical solutions derived from geometric and material analyses are presented for a number of benchmark structures to demonstrate the feasibility of the proposed method of analysis. The solutions generated for the geometrical analysis of a cantilever beam and an axially restrained column yield results that were close in proximity to the exact, theoretical solution. The geometric nonlinear analysis of the one-story frame exhibited typical behavior that was relatively close to the experimental results, thereby indicating that the proposed method is accurate. The feasibility of extending the method of analysis to include the effects of material nonlinearity is also explored, and some preliminary results are presented for an experimentally tested simply supported beam and the aforementioned one-story frame. The solutions generated for these structures indicate that the present analysis accurately predicts the deflections at lower temperatures but overestimates the failure temperature and final deflection. This may be in part due to a post-buckling reaction after the first plastic hinge is formed. Additional research is, therefore, needed before this method can be used to analyze the materially nonlinear response of structures.
17

Experimental and Analytical Investigations of Piles and Abutments of Integral Bridges

Arsoy, Sami 05 January 2001 (has links)
Bridges without expansion joints are called "integral bridges." Eliminating joints from bridges crates concerns for the piles and the abutments of integral bridges because the abutments and the piles are subjected to temperature-induced cyclic lateral loads. As temperatures change daily and seasonally, the lengths of integral bridges increase and decrease, pushing the abutment against the approach fill and pulling it away. As a result the bridge superstructure, the abutment, the approach fill, the foundation piles and the foundation soil are all subjected to cyclic loading, and understanding their interactions is important for effective design and satisfactory performance of integral bridges. The ability of piles to accommodate lateral displacements is a significant factor in determining the maximum possible length of integral bridges. In order to build longer integral bridges, pile stresses should be kept low. This research project investigated the complex interactions that take place between the structural components of the integral bridge and the soil through experimental and analytical studies. A literature review was conducted to gain insight into the integral bridge/soil interactions, and to synthesize the information available about the cyclic loading damage to piles of integral bridges. The ability of the piles and the abutments to withstand cyclic loads was investigated by conducting large-scale cyclic load tests. Three pile types and three semi-integral abutments were tested in the laboratory. Experiments simulated 75 years of bridge life for each specimen by applying over 27,000 displacement cycles. Numerical analyses were conducted to investigate the interactions among the abutment, the approach fill, the foundation soil, and the piles. The original VDOT semi-integral abutment hinge experienced shear key failure as observed in two large-scale laboratory tests. The revised hinge detail did not exhibit any sign of damage. Both abutments tolerated 75-year worth of displacement cycles without any appreciable change in their behavior. Semi-integral abutments are recommended for longer integral bridges because they can reduce pile stresses. As the need to build longer integral bridges grows, the role of the semi-integral abutments is expected to become more important. The data from the experimental program indicates that steel H-piles are the best pile type for support of integral abutment bridges. Concrete piles are not recommended because under repeated lateral loads, tension cracks progressively worsen and significantly reduce vertical load carrying capacity of these piles. Pipe piles have high flexural stiffness, which results in an undesired condition for the shear stresses in the abutment. For this reason, stiff pipe piles are not recommended for support of integral bridges. Numerical analyses indicate that the interactions between the approach fill and the foundation soils create favorable conditions for stresses in piles supporting integral bridges. Because of these interactions, the foundation soil acts as if it were softer, resulting in reduction in pile stresses compared to a single pile in the same soil without the approach fill above it. / Ph. D.
18

Controlled Evaluation of Silver Nanoparticle Dissolution: Surface Coating, Size and Temperature Effects

Liu, Chang 30 March 2020 (has links)
The environmental fate and transport of engineered nanomaterials have been broadly investigated and evaluated in many published studies. Silver nanoparticles (AgNPs) represent one of the most widely manufactured nanomaterials. They are currently being incorporated into a wide range of consumer products due to their purported antimicrobial properties. However, either the AgNPs themselves or dissolved Ag+ ions has a significant potential for the environmental release. The safety issues for nanoparticles are continuously being tested because of their potential danger to the environment and human health. Studies have explored the toxicity of AgNPs to a variety of organisms and have shown such toxicity is primarily driven by Ag+ ion release. Dissolution of nanoparticles is an important process that alters their properties and is a critical step in determining their safety. Therefore, studying nanoparticles' dissolution can help in the current move towards safer design and application of nanoparticles. This research endeavor sought to acquire comprehensive kinetic data of AgNP dissolution to aid in the development of quantitative risk assessments of AgNP fate. To evaluate the dissolution process in the absence of nanoparticle aggregation, AgNP arrays were produced on glass substrates using nanosphere lithography (NSL). Changes in the size and shape of the prepared AgNP arrays were monitored during the dissolution process by atomic force microscopy (AFM). The dissolution of AgNP is affected by both internal and external factors. First, surface coating effects were investigated by using three different coating agents (BSA, PEG1000, and PEG5000). Capping agent effects nanoparticle transformation rate by blocking reactants from the nanoparticle surface. Coatings prevented dissolution to different extents due to the various way they were attached to the AgNP surface. Evidence for the existence of bonds between the coating agents and the AgNPs was obtained by surface enhanced Raman spectroscopy. Moreover, to study the size effects on AgNP dissolution, small, medium, and large sized AgNPs were used. The surrounding medium and temperature were the two variables that were included in the size effects study. Relationships were established between medium concentration and dissolution rate for three different sized AgNP samples. By using the Arrhenius equation to plot the reaction constant vs. reaction temperature, the activation energy of AgNPs of different sizes were obtained and compared. / Doctor of Philosophy / Nanomaterials, defined as materials with at least one characteristic dimension less than 100 nm, often have useful attributes that are distinct from the bulk material. The novel physical, chemical, and biological properties enable the promising applications in various manufacturing industry. Silver nanoparticles (AgNPs) represent one of the most widely manufactured nanomaterials and has been used as the antimicrobial agent in a wide range of consumer products. However, either the AgNPs themselves or dissolved Ag+ ions has a significant potential for the environmental release. The environmental fate and transport of AgNPs drawn considerable attentions because of the potential danger to environment and human health. Dissolution of nanoparticles is an important process that alters their properties and is a critical step in determining their safety. Ag+ ions migrate from the nanoparticle surface to the bulk solution when an AgNP dissolves. Studying nanoparticles' dissolution can help in the current move towards safer design and application of nanoparticles. This research aimed to acquire comprehensive kinetic data of AgNP dissolution to aid in the development of quantitative risk assessments of AgNP fate. AgNP arrays were produced on glass substrates using nanosphere lithography (NSL) and changes in the size and shape during the dissolution process were monitored by atomic force microscopy (AFM). First, surface coating effects were investigated by using three different coating agents. Coatings prevented dissolution to different extents due to the various way they were attached to the AgNP surface. Moreover, small, medium, and large sized AgNPs were used to study the size effects on AgNP dissolution. The surrounding medium concentration and temperature were the two variables that were included in the size effects study.
19

Thermo-mechanical strain rate-dependent behavior of shape memory alloys as vibration dampers and comparison to conventional dampers

Gur, S., Mishra, S. K., Frantziskonis, G. N. 31 May 2015 (has links)
A study on shape memory alloy materials as vibration dampers is reported. An important component is the strain rate-dependent and temperature-dependent constitutive behavior of shape memory alloy, which can significantly change its energy dissipation capacity under cyclic loading. The constitutive model used accounts for the thermo-mechanical strain rate-dependent behavior and phase transformation. With increasing structural flexibility, the hysteretic loop size of shape memory alloy dampers increases due to increasing strain rates, thus further decreasing the response of the structure to cyclic excitation. The structure examined is a beam, and its behavior with shape memory alloy dampers is compared to the same beam with conventional dampers. Parametric studies reveal the superior performance of the shape memory alloy over the conventional dampers even at the resonance frequency of the beam-damper system. An important behavior of the shape memory alloy dampers is discovered, in that they absorb energy from the fundamental and higher vibration modes. In contrast, the conventional dampers transfer energy to higher modes. For the same beam control, the stiffness requirement for the shape memory alloy dampers is significantly less than that of the conventional dampers. Response quantities of interest show improved performance of the shape memory alloy over the conventional dampers under varying excitation intensity, frequency, temperature, and strain rate.
20

Elevated temperature effects on interface shear behavior

Karademir, Tanay 25 August 2011 (has links)
Environmental conditions such as temperature inevitably impact the long term performance, strength and deformation characteristics of most materials in infrastructure applications. The mechanical and durability properties of geosynthetic materials are strongly temperature dependent. The interfaces between geotextiles and geomembranes as well as between granular materials such as sands and geomembranes in landfill applications are subject to temperature changes due to seasonal temperature variations as well as exothermic reactions occurring in the waste body. This can be a critical factor governing the stability of modern waste containment lining systems. Historically, most laboratory geosynthetic interface testing has been performed at room temperature. Information today is emerging that shows how temperatures in the liner systems of landfills can be much higher. An extensive research study was undertaken in an effort to investigate temperature effects on interface shear behavior between (a) NPNW polypropylene geotextiles and both smooth PVC as well as smooth and textured HDPE geomembranes and (b) sands of different angularity and smooth PVC and HDPE geomembranes. A temperature controlled chamber was designed and developed to simulate elevated temperature field conditions and shear displacement-failure mechanisms at these higher temperatures. The physical laboratory testing program consisted of multiple series of interface shear tests between material combinations found in landfill applications under a range of normal stress levels from 10 to 400 kPa and at a range of test temperatures from 20 to 50 °C. Complementary geotextile single filament tensile tests were performed at different temperatures using a dynamic thermo-mechanical analyzer (DMA) to evaluate tensile strength properties of geotextile single filaments at elevated temperatures. The single filament studies are important since the interface strength between geotextiles and geomembranes is controlled by the fabric global matrix properties as well as the micro-scale characteristics of the geotextile and how it interacts with the geomembrane macro-topography. The peak interface strength for sand-geomembrane as well as geotextile-geomembrane interfaces depends on the geomembrane properties such as hardness and micro texture. To this end, the surface hardness of smooth HDPE and PVC geomembrane samples was measured at different temperatures in the temperature controlled chamber to evaluate how temperature changes affect the interface shear behavior and strength of geomembranes in combination with granular materials and/or geotextiles. The focus of this portion of the experimental work was to examine: i) the change in geomembrane hardness with temperature; ii) develop empirical relationships to predict shear strength properties of sand - geomembrane interfaces as a function of temperature; and iii) compare the results of empirically predicted frictional shear strength properties with the results of direct measurements from the interface shear tests performed at different elevated temperatures.

Page generated in 0.074 seconds