• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 28
  • 9
  • 3
  • 1
  • Tagged with
  • 112
  • 112
  • 53
  • 53
  • 41
  • 26
  • 25
  • 23
  • 22
  • 21
  • 16
  • 16
  • 16
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determination of diffusion coefficient for unsaturated soils

Sood, Eeshani 29 August 2005 (has links)
The structures constructed on unsaturated soils are damaged by the movement of the soil underneath. The movement is basically due to the flow of moisture in and out of the soil. This change in moisture also affects the strength of the soil, thus resulting in failure of slopes of embankments constructed with these soils. Therefore, it is very important to study the diffusion properties of unsaturated soils. Study of the diffusion properties requires the determination of the diffusion coefficient (/). In this thesis improvements in the drying test, originally proposed by Mitchell (1979), have been discussed. The study also involves defining the evaporation coefficient (he) which has been ill-defined in previous research work. The flow through unsaturated soils is non-linear but due to the complexity involved it has been simplified to a linear problem. The nonlinear behavior has been studied during this research. Therefore, certain refinements have been applied in the determination of the diffusion coefficient. The laboratory procedure followed involves measuring the soil suction along the length of the sample and at different times using thermocouple psychrometers. The evaluation of the evaporation coefficient (he) has been made an integral part of the procedure. The diffusion coefficient is determined using the curve fitting procedure of Aubeny and Lytton, 2003.
2

A potential technique to determine the unsaturated soil shear strength parameter

Kulkarni, Renu Uday 10 October 2008 (has links)
The shear strength behavior of unsaturated soils is a complex phenomenon. The major factors that lead to the complex behavior are grain size, natural alteration in status of moisture and associated capillary potential. The need for research is felt to understand the various aspects associated with development of shear strength of unsaturated soils. The research is conducted to obtain the most economical and reliable design solutions. The magnitude of positive pore water pressure developed in saturated soil reduces the shear strength to a great extent. The tensile pore water pressure in the capillary meniscus developed around the soil grain contacts, on the contrary, enhances the factor of safety in the case of unsaturated soil mass. In this research, the shear strength of unsaturated soil is studied for a range of saturation based on the parametric study. The principle of effective stress has proven to be the basis for understanding the shear strength of saturated soil mass and it has provided an explanation for the geotechnical engineering problems. The thesis presents a study on the shear strength of the soil specimen using the direct shear apparatus. The previous research was mainly directed towards evaluation of shear strength under controlled soil suction, by modifying the apparatus. A simple technique is put forward in this research by making use of the conventional direct shear apparatus for testing the unsaturated soil. The suction stress was induced in the soil specimen and the shear strength was evaluated. The soil water characteristic curve has been used in the research to determine the tensile pore water pressure. Hypothesis based on parametric study has been put forward to present a technique to determine the unsaturated soil shear strength parameter in the thesis.
3

Stability and consolidation of sediment tailings incorporating unsaturated soil mechanics

Satyanaga, A., Wijaya, M., Zhai, Q., Moon, S.-W., Pu, Jaan H., Kim, J.R. 23 March 2022 (has links)
Yes / Tailing dams are commonly used to safely store tailings without damaging the environment. Sand tailings (also called Sediment tailings) usually have a high water content and hence undergo consolidation during their placement. As the sediment tailings are usually placed above the ground water level, the degree of saturation and permeability of the sediment tailing is associated with the unsaturated condition due to the presence of negative pore-water pressure or suction. Current practices normally focus on the analyses saturated conditions. However, this consolidation process requires the flow of water between saturated and unsaturated zones to be considered. The objective of this study is to investigate the stability and consolidation of sediment tailings for the construction of road pillars considering the water flow between saturated and unsaturated zones. The scope of this study includes the unsaturated laboratory testing of sediments and numerical analyses of the road pillar. The results show that the analyses based on saturated conditions overestimate the time required to achieve a 90% degree of consolidation. The incorporation of the unsaturated soil properties is able to optimize the design of slopes for road pillars into steeper slope angles.
4

Multiphase Deformation Analysis of Elasto-viscoplastic Unsaturated Soil and Modeling of Bentonite / 弾-粘塑性不飽和土の多相変形解析とベントナイトのモデル化 / ダン - ネンソセイ フホウワド ノ タソウ ヘンケイ カイセキ ト ベントナイト ノ モデルカ

Feng, Huaiping 24 March 2008 (has links)
The deformation behavior of unsaturated soil has been the subject of numerous experimental and theoretical investigations. However, this phenomenon is not fully understood. Problems, such as the adoption of the proper stress variables, reduction of suction inducing collapse, suction effect on soil stiffness, rate dependency and air trapped within the soil under rainfall infiltration still need additional studies. In the present studies, an elasto-viscoplastic model for unsaturated soil is used based on two stress variables: 1) the skeleton stress is adopted as the stress variable; 2) suction is incorporated into the constitutive model to describe the collapse behavior. In addition, to investigate the multiphase behavior of unsaturated soil, a three-phase coupled model has been proposed based on the Theory of Porous Media (TPM) and finite deformation theory. Van Genuchten type of equation is employed as a constitutive equation between the saturation and the suction. Three-dimensional multiphase simulations are carried out to reproduce the behavior of unsaturated soil during monotonic loading triaxial tests under drained and undrained conditions for water and air. Compared with experimental results and the simulated results, it is seen that the proposed formulation is very suitable to describe the mechanical behaviors of unsaturated soil. Cyclic behavior of unsaturated soil has attracted much attention during the past few years. An elasto-viscoplastic cyclic model for saturated soil is extended for modeling of unsaturated soil. Based on finite deformation theory, three-dimensional multiphase analyses for unsaturated soil under cyclic loading are presented. The simulations are verified with cyclic triaxial tests on unsaturated silty clay under undrained for water and air conditions. It shows that the proposed multiphase formulation can be used to simulate the behaviors of unsaturated soil under cyclic loading. The high expansiveness of bentonite is another significant problem in unsaturated soil mechanics. In this research, an elasto-viscoplastic model for unsaturated expansive soil has been developed. An evolutional equation is adopted for describing the absorption of water into interlayer of clay platelets. In addition, the internal compaction effect caused by swelling of clay unit is expressed with the expansion of overconsolidation boundary surface and static yield surface. Based on the model, one-dimensional finite element analysis is conducted to study the development of swelling pressure. Compared with experimental results and simulated results, it is found that the proposed model can reproduce the effects of dry density and initial water content on swelling behavior. Using the proposed swelling model, two-dimensional swelling behaviors of the waste barrier are simulated. / Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第13775号 / 工博第2879号 / 新制||工||1425(附属図書館) / 25991 / UT51-2008-C691 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 岡 二三生, 教授 松岡 俊文, 准教授 木元 小百合 / 学位規則第4条第1項該当
5

A Method to Improve the Performance of Capillary Barriers Using Heated Air Flow

Salah, Mohammad 25 September 2020 (has links)
The investigation described in this thesis is aimed at determining the effect of heated air flow on the behaviour of capillary barriers. In order to achieve the objectives of this investigation, a number of tasks were undertaken, as described hereinafter. First, a laboratory scale testing was carried out to determine the effect of heated air flow on the volumetric water content (VWC) and matric suction in a layer of soil representing the coarse grained soil layer of a capillary barrier. Several types of instruments were used to measure the VWC, matric suction, and temperature at different locations within the soil. Next, a numerical analysis was undertaken to simulate the behaviour of the soil mass subjected to thermal changes in the laboratory experiments. Lastly, two case studies were analyzed with and without the heated air flow in the coarse grained soil layer to validate the proposed model. The method used in this investigation was based on: (1) application of temperature change at the perimeters of the pipes installed in the coarse grained soil layer near the interface between the fine grained and coarse grained soil layers; and, (2) application of suction as a boundary condition at the perforated parts of the pipes to decrease VWC and increase matric suction in the soil mass. Using this specific method, the results of the finite element analyses of the laboratory experiments and the two case studies demonstrated that the heated air flow through the coarse grained soil layer of a capillary barrier would improve its performance as a soil cover for a number of engineering applications. Comparisons of measured and calculated values of VWC and matric suction showed good agreement providing further proof of the validity of the method.
6

Deterministic and Random Isogeometric Analysis of Fluid Flow in Unsaturated Soils

Shahrokhabadi, Shahriar 08 December 2017 (has links)
The main objective of this research is to use IGA as an efficient and robust alternative for numerical simulation of unsaturated seepage problems. Moreover, this research develops an IGA-based probabilistic framework that can properly account for the variability of soil hydraulic properties in the simulations. In the first part, IGA is used in a deterministic framework to solve a head-based form of Richards’ equation. It is shown that IGA is able to properly simulate changes in pore pressure at the soils interface. In the second part of this research, a new probabilistic framework, named random IGA (RIGA), is developed. A joint lognormal distribution function is used with IGA to perform Monte Carlo simulations. The results depict the statistical outputs relating to seepage quantities and pore water pressure. It is shown that pore water pressure, flow rate, etc. change considerably with respect to standard deviation and correlation of the model parameters.
7

Interpretation of Load Transfer Mechanism for Piles in Unsaturated Expansive Soils

Liu, Yunlong 07 February 2019 (has links)
Water infiltration associated with natural precipitation events or other artificial activities such as pipe leaks in expansive soils significantly influence the engineering properties; namely, coefficient of permeability, shear strength and volume change behavior. For this reason, it is challenging to design or construct geotechnical infrastructure within or with expansive soils. Several billions of dollars losses, world-wide, can be attributed to the repairing, redesigning and retrofitting of infrastructure constructed with or within expansive soils, annually. Piles are widely used as foundations in expansive soils extending conventional design procedures based on the principles of saturated soil mechanics. However, the behavior of piles in unsaturated expansive soils is significantly different from conventional non-expansive saturated soils. Three significant changes arise as water infiltrates into expansive soil around the pile. Firstly, soil volume expansion contributes to ground heave in vertical direction. Secondly, volume expansion restriction leads to development of the lateral swelling pressure resulting in an increment in the lateral earth pressure in the horizontal direction. Thirdly, pile-soil interface shear strength properties change due to variations in water content (matric suction) of the surrounding soil. These three changes are closely related to matric suction variations that arise during the water infiltration process. For this reason, a rational methodology is necessary for the pile load transfer mechanism analysis based on the mechanics of unsaturated soils. Studies presented in this thesis are directed towards developing simple methods to predict the load transfer mechanism changes of piles in expansive soils upon infiltration. More emphasis is directed towards the prediction of the pile mechanical behavior which includes the pile head load-displacement relationship, the pile axial force (shaft friction) distribution and the pile base resistance using unsaturated mechanical as a tool. The function of matric suction as an independent stress state variable on the mechanical behavior pile is highlighted. More specifically, following studies were conducted: (i) Previous studies on various factors influencing the load transfer mechanisms of piles in unsaturated expansive soils are summarized and discussed to give a background of current research. More specifically, state-of-the-art reviews are summarized on the application of piles in expansive soils, mobilization of lateral swelling pressure, mobilization of unsaturated pile-soil interface shear strength and methods available for the load transfer analysis of piles in expansive soils. (ii) Employing unsaturated soil mechanics as a tool, theoretical methods are proposed for estimating the lateral earth pressure variations considering the mobilization of lateral swelling pressure. The proposed methods are verified using two large-scale laboratory studies and two field studies from published literatures. (iii) The shear displacement method and load transfer curve methods used traditionally for pile load transfer mechanisms analysis for saturated soils were modified to extend their applications for unsaturated expansive soils. The influence of volume change characteristics and unsaturated soil properties on unsaturated expansive soils are considered in these methods. The validation of the modified shear displacement method and modified load transfer curve method were established using a large-scale model test performed in the geotechnical engineering lab of University of Ottawa and a field case study results from the published literature. (iv) A large-scale model pile infiltration test conducted in a typical expansive soil from Regina in Canada in the geotechnical lab of University of Ottawa is presented and interpreted using the experimental data of volumetric water content suction measurements and shear strength data. The results of the comprehensive experiment studies are also used to validate the proposed modified shear displacement method and modified load transfer curve method achieving reasonable good comparisons. The proposed modified shear displacement method and modified load transfer curve method are simple and require limited number soil properties including the soil water characteristic curve (SWCC), matric suction profile upon wetting and drying and some soil physical properties. Due to these advantages, they can be easily and conveniently applied in engineering practice for prediction of the mechanical behavior of piles in unsaturated expansive soils, which facilitate practicing engineers to produce sound design of pile foundation in unsaturated expansive soils in a simplistic manner.
8

Effects of Temperature on Moisture Conductivity in Unsaturated Soil

Meeuwig, Richard O'Bannon 01 May 1964 (has links)
Water moves in soil in response to potential gradients. The basic equation for this movement is the generalized flow equation: v = - KV0 in which v is volume of water passing through a unit area in unit time, K is the conductivity coefficient, V is the gradient operator (vector), and V 0 is the potential gradient.
9

Effect of Desiccation Cracks on Earth Embankments

Khandelwal, Siddharth 02 October 2013 (has links)
Levees are earth structures used for flood protection. Due to their easy availability and low permeability, clays are the most common material used for the construction of levees. Clays are susceptible to desiccation cracks when subjected to long dry spells during summers. There has been an increased interest in studying the occurrence of cracks in soil mass. In particular, many experimental investigations for soils have been undertaken to learn about the crack pattern in earth embankment. However, there is a dearth of work that focuses on the numerical modeling of desiccation cracks effects on levees. This study has been undertaken to analyze the effect of desiccation cracking on the hydraulic behavior of an earth embankment under flooding conditions. A numerical model was developed using the finite element package CODE_BRIGHT. The model was validated from the data obtained from a small scale embankment experiment under controlled environmental conditions. As the phenomenon of desiccation cracking is highly random, a simple random model was developed to capture the variability in crack geometry. The random crack geometry was then passed on to the finite element mesh, so that a probabilistic analysis can be carried out using a Monte Carlo approach, for assessing the embankment’s integrity. The results obtained from the analysis such as time to steady state saturation and steady state flow rate at the outward slope were very interesting to study and provided an insight on the effect of desiccation cracks on unsaturated earth embankments.
10

Modélisation numérique et analytique de la fissuration de séchage des sols argileux / Numerical and analytical modelling of desiccation cracking in clayey soils

Vo, Thi Dong 06 October 2017 (has links)
Ce travail a pour objectif d’étudier la fissuration des sols due au séchage par des approches numérique et analytique. L’initiation et la propagation des fissures sont investiguées en utilisant un code de calcul aux éléments finis avec la présence des joints cohésifs. Les couplages entre le problème hydraulique et le comportement mécanique en présence des discontinuités sont considérés. La loi de la fissure cohésive est appliquée pour modéliser l’initiation et la propagation des fissures.Tout d’abord, les résultats d’un essai de séchage au laboratoire réalisé sur un sol argileux à l’état liquide sont utilisés afin d’évaluer la méthode numérique proposée. Les résultats numériques montrent que le modèle est capable de reproduire les tendances principales du processus de séchage. Elle souligne aussi l’importance des conditions aux limites dans l’initiation des fissures. Ensuite, une approche énergétique est proposée pour étudier l’initiation d’une fissure. Les énergies élastiques avant et après l’initiation de la fissure sont estimées par les deux approches analytique et numérique. L’énergie dissipée lors de l’initiation de la fissure est comparée avec le taux d’énergie pour créer une fissure. Les analyses montrent que le critère d’énergie peut est atteint avant le critère de contrainte. La dissipation de l’énergie cumulée correspond à la propagation instable lors de l’initiation de la fissure. De plus, le développement et la géométrie des fissures sont étudiés essentiellement par les simulations numériques avec plusieurs joints cohésifs. Les résultats numériques montrent que la fissuration se produit souvent progressivement pour former différentes familles de fissures par un processus dichotomique (une fissure apparait au milieu de deux fissures existantes). La propagation d’une fissure est brutale dans la phase d’initiation pour atteindre une profondeur appelée ‘ultime’. Les fissures dans chaque famille peuvent apparaitre simultanément à un même niveau de succion et présentent une même profondeur ultime. En se basant sur les résultats numériques et quelques analyses analytiques supplémentaires, des relations empiriques sont proposées afin de prédire l’espacement et la profondeur ultime des fissures. Finalement, quelques calculs préliminaires sont réalisés afin d’évaluer le potentiel de la méthode numérique proposée pour prédire la fissuration liée au séchage des ouvrages en terre / This work focuses on the analysis of desiccation cracking by numerical and analytical approaches. The initiation and the propagation of cracks are investigated by using a finite element code including cohesive joints elements. Coupling between the hydraulic and the mechanical processes in the presence of discontinuities is considered. The cohesive crack’s law is applied to simulate the initiation and the propagation of cracks.Results of a laboratory experiments performed on slurry clay soil are first used to evaluate the proposed numerical modelling method. The results show that the method is able to reproduce the main trends of desiccation process. The importance of boundary conditions are also discussed. Second, an energy approach is proposed to study the initiation of cracks. The energies before and after crack initiation are estimated by both numerical and analytical solutions. The energy released by cracking is then compared to the crack energy to discuss crack initiation conditions. The analysis shows that the energy criterion is reached before the stress criterion, and this can explain unstable crack propagation at the beginning. Third, the development and the geometry of desiccation cracks are studied by numerical simulation with several cohesive joints. The numerical results show that cracking occurs sequentially to form different cracks families with a dichotomy process (the subsequent cracks appear at the middle of two existing neighboring ones). The cracks in each family appear simultaneously and reach an identical ultimate depth. From the numerical results and additional analytical analysis, empirical correlations are proposed to predict the spacing and crack depth. Finally, some preliminary studies are performed showing that the proposed numerical method can be used to predict the desiccation crack phenomena observed on geotechnical earth structures

Page generated in 0.09 seconds