• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Temporal Convolutional Networks in Lieu of Fuel Performance Codes : Conceptual Study Using a Cladding Oxidation Model

Nerlander, Viktor January 2021 (has links)
Fuel performance codes are used to demonstrate with confidencethat nuclear fuel rods will sustain normal operation and transientevents without being damaged. However, the execution time of a typ-ical fuel rod simulation ranges from tens of seconds to minutes which can be impractical in certain applications. In the scope of this work,at least two such applications are identified; code-calibration and fuelcore evaluations. In both of these cases, possible improvements can be obtainedby creating neural network surrogate models. For code calibration,a Deep Neural Network is enough since calibration is performed onmodel constants. But for full-core evaluations, a surrogate model mustbe able to predict a time-dependent target as a function of a time-dependent input. In this work, Temporal Convolutional Networks are investigated for the second application. In both applications, targetdata are generated with a Cladding Oxidation Model. The result of the study shows that both models succeeded in their respective tasks with good performance metrics. However, furtherwork is needed to increase the number of input and target variablesthat the Deep Neural Network can handle, verify the flexibility ofinput data files for the TCN, try out the TCN on a real code, and combine the two models and achieve a broader set of use-cases. / <p>Kursnamn: Fördjupande projektarbete i energisystem</p><p>Kurskod: 1FA394</p>
2

Quaternion Temporal Convolutional Neural Networks

Long, Cameron E. 26 September 2019 (has links)
No description available.
3

Evaluation of Temporal Convolutional Networks for Nanopore DNA Sequencing

Stymne, Jakob, Welin Odeback, Oliver January 2020 (has links)
Nanopore sequencing, a recently developed methodfor DNA sequencing, involves applying a constant electricfield over a membrane and translocating single-stranded DNAmolecules through membrane pores. This results in an electricalsignal, which is dependent on the structure of the DNA. The aimof this project is to train and evaluate a non-causal temporalconvolution neural network in order to accurately translate suchelectrical raw signal into the corresponding nucleotide sequence.The training dataset is sampled from the E. coli bacterial genomeand the phage Lambda virus. We implemented and evaluatedseveral different temporal convolutional architectures. Using anetwork with five residual blocks with five convolutional layersin each block yields maximum performance, with a predictionaccuracy of 76.1% on unseen test data. This result indicates thata temporal convolution network could be an effective way tosequence DNA data. / Nanopore sequencing är en nyligen utvecklad metod för DNA-sekvensering som innebär att man applicerar ett konstant elektriskt fält över ett membran och translokerar enkelsträngade DNA-molekyler genom membranporer. Detta resulterar i en elektrisk signal som beror på DNA-strukturen.  Målet med detta projekt är att träna och evaluera icke-kausula ”temporal convolutional networks” som ska kunna översätta denna ofiltrerade elektriska signalen till den motsvarande nukleotidsekvensen. Träningsdatan är ett urval av genomen från bakterien E. coli och viruset phage Lambda. Vi implementerade och utvärderade ett antal olika nätverksstrukturer. Ett nätverk med fem residuala block med fem faltande lager i varje block gav maximal prestation, med en precision på 76.1% på testdata. Detta resultat indikerar att ett ”temporal convolution network” skulle kunna vara ett effektivt sätt att sekvensera DNA. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
4

Generation of a metrical grid informed by Deep Learning-based beat estimation in jazz-ensemble recordings / Generering av ett metriskt rutnät informerat på Deep Learning-baserad beatuppskattning i jazzensembleinspelningar

Alonso Toledo Carrera, Andres January 2023 (has links)
This work uses a Deep Learning architecture, specifically a state-of-the-art Temporal Convolutional Network, to track the beat and downbeat positions in jazz-ensemble recordings to derive their metrical grid. This network architecture has been used successfully for general beat tracking purposes. However, the jazz genre presents difficulties for this Music Information Retrieval sub-task due to its inherent complexity, and there is a lack of dedicated sets for evaluating a model’s beat tracking performance for different playstyles of this specific music genre. We present a methodology in which we trained a PyTorch implementation of the original architecture with a recalculated binary cross-entropy loss that helps boost the model’s performance compared to a standard trained version. In addition, we retrained these two models using source-separated drums and bass tracks from jazz recordings to improve performance. We further improved the model’s performance by calibrating rhythm parameters using a priori knowledge that narrows the model’s prediction range. Finally, we proposed a novel jazz dataset comprised of recordings from the same jazz piece played with different styles and used this to evaluate the performance of this methodology. We also evaluate a novel sample with tempo variations to demonstrate the architecture’s versatility. This methodology, or parts of it, can be exported to other research work and music information tools that perform beat tracking or other similar Music Information Retrieval sub-tasks. / Vi använde en Deep Learning-arkitektur för att spåra beat- och downbeatpositionerna i jazz-ensembleinspelningar för att härleda deras metriska rutnät. Denna nätverksarkitektur har använts framgångsrikt för allmän taktspårning. Men jazzgenren uppvisar svårigheter för denna deluppgift för återhämtning av musikinformation på grund av dess inneboende komplexitet, och det finns en brist på dedikerade datauppsättningar för att utvärdera en modells prestanda för olika spelstilar av denna specifika musikgenre. Vi presenterar en metod där vi tränade modellen med en omräknad binär korsentropiförlust som hjälper till att öka modellens prestanda jämfört med en utbildad standardversion. Dessutom tränade vi om dessa två modeller med hjälp av källseparerade spår från jazzinspelningar för att förbättra resultaten. Vi förbättrade modellens prestanda ytterligare genom att kalibrera parametrar med hjälp av a priori kunskap. Slutligen föreslog vi en ny jazzdatauppsättning bestående av inspelningar från samma jazzstycke som spelades med olika stilar och använde detta för att utvärdera hur denna metod fungerar. Vi utvärderar också ett nytt prov med tempovariationer för att visa arkitekturens mångsidighet. Denna metodik, eller delar av den, kan exporteras till andra forskningsarbeten och musikinformationsverktyg som utför beat tracking eller andra liknande Music Information Retrieval underuppgifter.
5

Applying Deep Learning To Improve Optimization- Based Approaches For Robust Sensor Fusion

Wikström, Pernilla January 2021 (has links)
Recent studies show that deep learning can be employed to learn from sensor data to improve accuracy and robustness of sensor fusion algorithms. In the same vein, in this thesis we use a state-of-the-art temporal convolution network to predict zero velocity updates (ZUPT) from raw inertial measurement unit (IMU) signals, and use the network output to improve the performance of an optimization-based pose estimator. Experiments were conducted on publicly available datasets, and results show that (i) the network can distinguish a car in motion vs. a car standing still by observing an IMU signal, and (ii) that ZUPT detection enhances the observability of states in the optimization-based pose estimation, thus reducing local drift. / Nyligen gjorda studier visar att djupinlärning kan användas för att lära av sensordata för att förbättra noggrannhet och robusthet hos sensorfusionsalgoritmer. På samma sätt använder vi i denna avhandling en tidsberoende faltnings neuronnätsmodell (TCN) för att detektera om ett fordon står stilla även kallat zero velocity updates (ZUPT) från IMU rå- data och använder neuronnätsprediktionen för att förbättra prestandan hos en optimeringsbaserad positionsuppskattning. Experiment utfördes på allmänt publicerade datamängder, och resultaten visar att (i) neuronnätsmodellen kan läras till att urskilja en bil i rörelse kontra en bil som står stilla genom att observera en IMU- signal, och (ii) att ZUPT- detektering förbättrar observerbarheten för tillstånd i den optimeringsbaserade positioneringsuppskattningen, vilket minskar lokal drift.
6

Temporal Convolutional Networks for Nanopore DNA Sequencing

Santiago Garcia, Eric, Salomonsson Aspåker, Hannes January 2020 (has links)
Nanopore DNA sequencing is a novel method forsequencing DNA where an electronic signal is modulated bynucleotides passing through nanosized pores embedded in a mem-brane. While current state-of-the-art solutions employ recurrentneural networks to analyse the signal, temporal convolutionalnetworks have recently been shown to match or outperformrecurrent networks in signal processing tasks. In this project, weinvestigate the performance of temporal convolutional networkson a simplified version of the sequencing task, where thegoal is to predict the nucleotides passing through the pore ateach instance in time, without reconstructing the correspondingDNA sequence. The impact of several network parameters onpredictive performance is analysed to determine an optimalarchitecture. While the implemented networks are shown tobe proficient at predicting nucleotides within the pore, thecurrent implementation is unlikely to outperform state-of-the-art solutions without further improvement. / En nyligen utvecklad metod för att sekvensera DNA innefattar att en elektrisk signal moduleras genom att nukleotider passerar genom porer i nanostorlek. I kommersiella lösningar analyseras denna signal med hjälp av maskininlärning via Recurrent Neural Networks, men en variant av neruala nätverk som kallas Temporal Convolution Networks har nyligen har visat sig ha bättre prestanda jämfört med Recurrent Networks för olika typer av signalbehandlingsproblem. Målet med detta projekt är att undersöka användbarheten av Temporal Convolutional Networks för en förenklad version av DNA-sekvensering, där uppdraget endast är att identifera de nukleotider som passerar genom poren vid varje given tidpunkt, istället för att rekonstruera en komplett DNA-sekvens. För att kunna bestämma en optimal arkitektur på nätverket så undersöks effekten av flera olika parametrar. De implementerade nätverken visas ha god förmåga att klassificera nukleotider, men är troligtvis i behov av ytterligare förbättringar för att kunna konkurrera med nuvarande kommersiella lösningar. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
7

Diagnosis of Evaporative Emissions Control System Using Physics-based and Machine Learning Methods

Yang, Ruochen 24 September 2020 (has links)
No description available.
8

Prediction of Protein-Protein Interactions Using Deep Learning Techniques

Soleymani, Farzan 24 April 2023 (has links)
Proteins are considered the primary actors in living organisms. Proteins mainly perform their functions by interacting with other proteins. Protein-protein interactions underpin various biological activities such as metabolic cycles, signal transduction, and immune response. PPI identification has been addressed by various experimental methods such as the yeast two-hybrid, mass spectrometry, and protein microarrays, to mention a few. However, due to the sheer number of proteins, experimental methods for finding interacting and non-interacting protein pairs are time-consuming and costly. Therefore a sequence-based framework called ProtInteract is developed to predict protein-protein interaction. ProtInteract comprises two components: first, a novel autoencoder architecture that encodes each protein's primary structure to a lower-dimensional vector while preserving its underlying sequential pattern by extracting uncorrelated attributes and more expressive descriptors. This leads to faster training of the second network, a deep convolutional neural network (CNN) that receives encoded proteins and predicts their interaction. Three different scenarios formulate the prediction task. In each scenario, the deep CNN predicts the class of a given encoded protein pair. Each class indicates different ranges of confidence scores corresponding to the probability of whether a predicted interaction occurs or not. The proposed framework features significantly low computational complexity and relatively fast response. The present study makes two significant contributions to the field of protein-protein interaction (PPI) prediction. Firstly, it addresses the computational challenges posed by the high dimensionality of protein datasets through the use of dimensionality reduction techniques, which extract highly informative sequence attributes. Secondly, the proposed framework, ProtInteract, utilises this information to identify the interaction characteristics of a protein based on its amino acid configuration. ProtInteract encodes the protein's primary structure into a lower-dimensional vector space, thereby reducing the computational complexity of PPI prediction. Our results provide evidence of the proposed framework's accuracy and efficiency in predicting protein-protein interactions.

Page generated in 0.114 seconds