• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RISO-GCT – Determinação do contexto temporal de conceitos em textos.

ALVES, George Marcelo Rodrigues. 24 April 2018 (has links)
Submitted by Kilvya Braga (kilvyabraga@hotmail.com) on 2018-04-24T12:36:47Z No. of bitstreams: 1 GEORGE MARCELO RODRIGUES ALVES - DISSERTAÇÃO (PPGCC) 2016.pdf: 2788195 bytes, checksum: 45c2b3c7089a4adbd7443b1c08cd4881 (MD5) / Made available in DSpace on 2018-04-24T12:36:47Z (GMT). No. of bitstreams: 1 GEORGE MARCELO RODRIGUES ALVES - DISSERTAÇÃO (PPGCC) 2016.pdf: 2788195 bytes, checksum: 45c2b3c7089a4adbd7443b1c08cd4881 (MD5) Previous issue date: 2016-02-26 / Devido ao crescimento constante da quantidade de textos disponíveis na Web, existe uma necessidade de catalogar estas informações que surgem a cada instante. No entanto, trata-se de uma tarefa árdua e na qual seres humanos são incapazes de realizar esta tarefa de maneira manual, tendo em vista a quantidade incontável de dados que são disponibilizados a cada segundo. Inúmeras pesquisas têm sido realizadas no intuito de automatizar este processo de catalogação. Uma vertente de grande utilidade para as várias áreas do conhecimento humano é a indexação de documentos com base nos contextos temporais presentes nestes documentos. Esta não é uma tarefa trivial, pois envolve a análise de informações não estruturadas presentes em linguagem natural, disponíveis nos mais diversos idiomas, dentre outras dificuldades. O objetivo principal deste trabalho é criar uma abordagem capaz de permitir a indexação de documentos, determinando mapas de tópicos enriquecidos com conceitos e as respectivas informações temporais relacionadas. Tal abordagem deu origem ao RISO-GCT (Geração de Contextos Temporais), componente do Projeto RISO (Recuperação da Informação Semântica de Objetos Textuais), que tem como objetivo criar um ambiente de indexação e recuperação semântica de documentos possibilitando uma recuperação mais acurada. O RISO-GCT utilizou os resultados de um módulo preliminar, o RISO-TT (Temporal Tagger), responsável por etiquetar informações temporais presentes em documentos e realizar o processo de normalização das expressões temporais encontradas. Deste processo foi aperfeiçoada a abordagem responsável pela normalização de expressões temporais, para que estas possam ser manipuladas mais facilmente na determinação dos contextos temporais. . Foram realizados experimentos para avaliar a eficácia da abordagem proposta nesta pesquisa. O primeiro, com o intuito de verificar se o Topic Map previamente criado pelo RISO-IC (Indexação Conceitual), foi enriquecido com as informações temporais relacionadas aos conceitos de maneira correta e o segundo, para analisar a eficácia da abordagem de normalização das expressões temporais extraídas de documentos. Os experimentos concluíram que tanto o RISO-GCT, quanto o RISO-TT incrementado obtiveram resultados superiores aos concorrentes. / Due to the constant growth of the number of texts available on the Web, there is a need to catalog that information which appear at every moment. However, it is an arduous task in which humans are unable to perform this task manually, given the increased amount of data available at every second. Numerous studies have been conducted in order to automate the cataloging process. A research line with utility for various areas of human knowledge is the indexing of documents based on temporal contexts present in these documents. This is not a trivial task, as it involves the analysis of unstructured information present in natural language, available in several languages, among other difficulties. The main objective of this work is to create a model to allow indexing of documents, creating topic maps enriched with the concepts in text and their related temporal information. This approach led to the RISO-GCT (Temporal Contexts Generation), a part of RISO Project (Semantic Information Retrieval on Text Objects), which aims to create a semantic indexing environment and retrieval of documents, enabling a more accurate recovery. RISO-GCT uses the results of a preliminary module, the RISO-TT (Temporal Tagger) responsible the labeling temporal information contained in documents and carrying out the process of normalization of temporal expressions. Found. In this module the normalization of temporal expressions has been improved, in order allow a richer temporal context determination. Experiments were conducted to evaluate the effectiveness of the approach proposed a in this research. The first, in order to verify that the topic map previously created by RISO-IC has been correctly enriched with temporal information related to the concepts correctly, and the second, to analyze the effectiveness of the normalization of expressions extracted from documents. The experiments concluded that both the RISO-GCT, as the RISO-TT, which was evolved during this work, obtained better results than similar tools.
2

Scalable location-temporal range query processing for structured peer-to-peer networks / Traitement de requêtes spatio-temporelles pour les réseaux pair-à-pair structurés

Cortés, Rudyar 06 April 2017 (has links)
La recherche et l'indexation de données en fonction d'une date ou d'une zone géographique permettent le partage et la découverte d'informations géolocalisées telles que l'on en trouve sur les réseaux sociaux comme Facebook, Flickr, ou Twitter. Cette réseau social connue sous le nom de Location Based Social Network (LBSN) s'applique à des millions d'utilisateurs qui partagent et envoient des requêtes ciblant des zones spatio-temporelles, permettant d'accéder à des données géolocalisées générées dans une zone géographique et dans un intervalle de temps donné. Un des principaux défis pour de telles applications est de fournir une architecture capable de traiter la multitude d'insertions et de requêtes spatio-temporelles générées par une grande quantité d'utilisateurs. A ces fins, les Tables de Hachage Distribué (DHT) et le paradigme Pair-à-Pair (P2P) sont autant de primitives qui forment la base pour les applications de grande envergure. Cependant, les DHTs sont mal adaptées aux requêtes ciblant des intervalles donnés; en effet, l'utilisation de fonctions de hachage sacrifie la localité des données au profit d'un meilleur équilibrage de la charge. Plusieurs solutions ajoutent le support de requêtes ciblant des ensembles aux DHTs. En revanche ces solutions ont tendance à générer un nombre de messages et une latence élevée pour des requêtes qui ciblent des intervalles. Cette thèse propose deux solutions à large échelle pour l'indexation des données géolocalisées. / Indexing and retrieving data by location and time allows people to share and explore massive geotagged datasets observed on social networks such as Facebook, Flickr, and Twitter. This scenario known as a Location Based Social Network (LBSN) is composed of millions of users, sharing and performing location-temporal range queries in order to retrieve geotagged data generated inside a given geographic area and time interval. A key challenge is to provide a scalable architecture that allow to perform insertions and location-temporal range queries from a high number of users. In order to achieve this, Distributed Hash Tables (DHTs) and the Peer-to-Peer (P2P) computing paradigms provide a powerful building block for implementing large scale applications. However, DHTs are ill-suited for supporting range queries because the use of hash functions destroy data locality for the sake of load balance. Existing solutions that use a DHT as a building block allow to perform range queries. Nonetheless, they do not target location-temporal range queries and they exhibit poor performance in terms of query response time and message traffic. This thesis proposes two scalable solutions for indexing and retrieving geotagged data based on location and time.

Page generated in 0.0456 seconds