• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical arbitrary waveform generation using chromatic dispersion in silica fibers

Von Eden, Elric Omar 14 June 2007 (has links)
A novel approach to optical pulse shaping and arbitrary waveform generation (OAWG) using time-domain spectral shaping (TDSS) in negative and positive dispersion in commercial optical fibers has been proposed and evaluated. In order to study the pulse shaping capability of this OAWG system, mathematical analysis was used to determine expressions for the expected output waveform under certain assumptions. Then, Matlab code was developed to model the propagation of an optical signal through a fiber with arbitrary characteristics as well as optical modulation using an electro-optic modulator. The code was first benchmarked to several well-known theoretical systems to ensure that it produced accurate results, and then it was used to examine the ability of this novel OAWG approach to generate different waveforms under various conditions. The results of numerous simulations are presented and used to qualitatively examine the ability of this system to perform OAWG in a real-world setting. Based on the results of simulations, mathematical modeling, as well as previous research in this area, it was determined that higher-order fiber dispersion could be a limitation to the time-bandwidth product and pulse shaping fidelity of this pulse shaping method. Additional dispersion compensation techniques were devised to help overcome these limitations such as the use of multiple dispersion-compensating fibers and spectral phase modulation. An OAWG system employing these techniques was also simulated using the developed Matlab code. Using these results, the possibility and feasibility of employing this system in various pulse shaping applications such as optical communications, are discussed and analyzed. Limitations of the system are also investigated, and methods to improve the system for future applications are suggested.

Page generated in 0.1619 seconds