• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Djet et Neheh : une histoire du temps égyptien /

Servajean, Frédéric, January 2007 (has links)
Habilitation à diriger des recherches--Égyptologie--Montpellier 3, 2006. / Bibliogr. p. 125-135. Index.
2

Le temps, l'autre et la mort dans trois fictions du milieu du XXe siècle : "El jardín de senderos que se bifurcan" de J. L. Borges, "Under the volcano" de M. Lowry et "Le rivage des Syrtes" de J. Gracq : la question de la fiction /

Visset, Pascal, January 2003 (has links)
Texte remanié de: Th. doct.--Litt. comparée--Paris 3, 2000. Titre de soutenance : L'autre, le temps et la mort dans trois fictions du milieu du XXe siècle : "El jardín de senderos que se bifurcan", 1941, de J. L. Borges, "Under the volcano", 1947, de Malcolm Lowry, "Le rivage des Syrtes", 1951, de Julien Gracq : la question de la fiction. / Bibliogr. p. 343-358. Index.
3

Processus de contact sur des graphes aléatoires / Contact process on random graphs

Can, Van Hao 01 June 2016 (has links)
Le processus de contact est l'un des systèmes de particules en interaction les plus étudiés. Il peut s'interpréter comme un modèlepour la propagation d'un virus dans une population ou sur un réseau. L'objectif de cette thèse est d'étudier la relation entre la structure locale du réseau et le comportement global du processus sur le réseau tout entier.Le cadre typique dans lequel on se place est celui d’une suite de graphes aléatoires $(G_n)$ convergeant localement vers un graphe limite $G$.On étudie alors le comportement asymptotique du temps d’extinction $tau_n$ du processussur $G_n$; lorsqu’initialement tous les individus sont infectés. Nous montrons sur plusieurs exemples qu’il existe unetransition de phase lorsque $lambda$ - le taux d'infection du processus - traverse une valeur critique $ lambda_c (G)$, qui ne dépend que de $G$.Plus précisément, pour certains modèles de graphes aléatoires comme le modèle de configuration, le graphe d'attachement préférentiel, le graphe géométrique aléatoire, le graphe inhomogène, nous montrons que $ tau_n $ est d'ordre soit logarithmique soit exponentiel; selon que $ lambda$ est soit inférieur ou supérieur à $lambda_c (G) $.De plus, dans certains cas, nous montrons des résultats de métastablité: en régime sur-critique, $ tau_n $ divisé par son espérance converge en loi vers une variable aléatoire exponentielle de moyenne $1$, et la densité des sites infectés reste stable (et non nulle) sur une période de temps d’ordre typiquement $tau_n$. / The contact process is one of the most studied interacting particle systems and is also often interpreted as a model for the spread of a virus in a population or a network. The aim of this thesis is to study the relationship of the local structure of the network and the global behavior of the contact process (the virus) on the whole network. Let $(G_n)$ be a sequence of random graphs converging weakly to a graph $G$. Then we study $tau_n$, the extinction time of the contact process on $G_n$ starting from full occupancy. We prove in some examples that there is a phase transition of $tau_n$ when $lambda$ - the infection rate of the contact process crosses a critical value $lambda_c(G)$ depending only on $G$. More precisely, for some models of random graphs, such as the configuration model, preferential attachment graph, random geometric graph, inhomogeneous graph, we show that $tau_n$ is of logarithmic (resp. exponential) order when $lambda < lambda_c(G)$ (resp. $lambda < lambda_c(G)$). Moreover, in some cases we also prove metastable results: in the super-critical regime, $tau_n$ divided by its expectation converges in law to an exponential random variable with mean $1$, and the density of the infected sites is stable for a long time.

Page generated in 0.0425 seconds