Spelling suggestions: "subject:"metastabilité"" "subject:"metastability""
1 |
Étude théorique de la structure et de la stabilité des alliages GeMn dans le cadre de la spintronique. Un prototype de semiconducteur magnétique confronté aux résultats expérimentaux.Arras, Emmanuel 22 April 2010 (has links) (PDF)
La spintronique a déjà permis plusieurs avancées majeures mais le problème de l'injection de spin s'oppose encore à son utilisation généralisée en microélectronique. Le concept de semi-conducteur magnétique dilué (DMS) a été envisagé comme solution, mais s'avère difficile à appliquer aux semi-conducteurs de type IV, dans lesquels les atomes magnétiques sont très peu solubles et forment des précipités. Nous nous sommes intéressé dans ce travail au système germanium manganèse, et à la structure de certains précipités particuliers, qui semblent cohérents avec la matrice de Ge, et dont les caractéristiques magnétiques, chimiques et structurales ne correspondent à aucun composé connu. Nous avons utilisé dans ce travail des outils simulation de type ab initio par l'approche DFT avec utilisation de pseudopotentiels PAW. Nous générons dans un premier temps des pseudopotentiels nécessaires pour le Ge et le Mn. Puis nous montrons grâce à une étude thermodynamique que les méthodes premier principe permettent de reproduire le diagramme de phase (x,T=0) du système Ge(x)Mn(1-x). Nous étudions ensuite les défauts ponctuels de Mn dans la matrice de Ge et leur possibles agglomérations, et montrons qu'une "condensation" de défauts sur le réseau diamant ne peut pas expliquer les observations expérimentales. Enfin, nous montrons que certains composés ordonnés dérivés de systèmes proches sont métastables dans GeMn, et cette fois compatibles avec les mesures. Grâce à une étude complète des interfaces avec le Ge diamant, nous parvenons à expliquer la stabilité de nanocolonnes riches en Mn (33%) dans une matrice de Ge pur. Nous comparons par ailleurs les propriétés simulées de nos composés à l'expérience : température de Curie, spectre XAS, mais aussi diffraction de rayon X et microscopie électronique à transmission (TEM).
|
2 |
Temps de transitions métastables pour des systèmes dynamiques stochastiques fini et infini-dimensionnelsBarret, Florent 06 July 2012 (has links) (PDF)
Dans cette thèse, nous nous sommes intéressés à la métastabilité de certains systèmes dynamiques stochastiques. Plus précisément, nous avons étudié des équations différentielles ou des équations aux dérivées partielles perturbées par un bruit blanc additif dans l'asymptotique du bruit faible. Nous avons donné l'expression et le calcul de l'espérance de temps des transitions métastables pour certains types de modèles (formule dite d'Eyring-Kramers). Dans un premier temps, nous avons généralisé des résultats connus pour des diffusions d'Itô dont la dérive est le gradient d'un potentiel. Nous donnons une équivalence entre la géométrie du paysage décrit par le potentiel et des circuits électriques qui nous permet de donner des expressions simples pour le calcul des temps de transition entre des minima du potentiel. Nous utilisons la théorie du potentiel et les capacités dans le calcul de ces temps. Le principal résultat de cette thèse concerne des équations aux dérivées partielles stochastiques scalaires, paraboliques, semi-linéaires et perturbées par un bruit blanc espace-temps sur un intervalle borné réel comme l'équation d'Allen-Cahn. Ce modèle constitue un analogue infini-dimensionnel aux diffusions en dimension finie. Nous avons considéré deux types de conditions au bord, Dirichlet et Neumann, et discutons le cas des conditions périodiques. Sous certaines hypothèses, nous donnons l'expression, analogue à la dimension finie, des temps transitions. La preuve utilise une discrétisation par différence finie de l'équation et un couplage nous permettant d'appliquer les estimations pour la dimension finie. Il a fallu notamment contrôler uniformément ces estimations en fonction de la dimension pour passer à la limite et récupérer le système infini-dimensionnel.
|
3 |
Processus de contact sur des graphes aléatoires / Contact process on random graphsCan, Van Hao 01 June 2016 (has links)
Le processus de contact est l'un des systèmes de particules en interaction les plus étudiés. Il peut s'interpréter comme un modèlepour la propagation d'un virus dans une population ou sur un réseau. L'objectif de cette thèse est d'étudier la relation entre la structure locale du réseau et le comportement global du processus sur le réseau tout entier.Le cadre typique dans lequel on se place est celui d’une suite de graphes aléatoires $(G_n)$ convergeant localement vers un graphe limite $G$.On étudie alors le comportement asymptotique du temps d’extinction $tau_n$ du processussur $G_n$; lorsqu’initialement tous les individus sont infectés. Nous montrons sur plusieurs exemples qu’il existe unetransition de phase lorsque $lambda$ - le taux d'infection du processus - traverse une valeur critique $ lambda_c (G)$, qui ne dépend que de $G$.Plus précisément, pour certains modèles de graphes aléatoires comme le modèle de configuration, le graphe d'attachement préférentiel, le graphe géométrique aléatoire, le graphe inhomogène, nous montrons que $ tau_n $ est d'ordre soit logarithmique soit exponentiel; selon que $ lambda$ est soit inférieur ou supérieur à $lambda_c (G) $.De plus, dans certains cas, nous montrons des résultats de métastablité: en régime sur-critique, $ tau_n $ divisé par son espérance converge en loi vers une variable aléatoire exponentielle de moyenne $1$, et la densité des sites infectés reste stable (et non nulle) sur une période de temps d’ordre typiquement $tau_n$. / The contact process is one of the most studied interacting particle systems and is also often interpreted as a model for the spread of a virus in a population or a network. The aim of this thesis is to study the relationship of the local structure of the network and the global behavior of the contact process (the virus) on the whole network. Let $(G_n)$ be a sequence of random graphs converging weakly to a graph $G$. Then we study $tau_n$, the extinction time of the contact process on $G_n$ starting from full occupancy. We prove in some examples that there is a phase transition of $tau_n$ when $lambda$ - the infection rate of the contact process crosses a critical value $lambda_c(G)$ depending only on $G$. More precisely, for some models of random graphs, such as the configuration model, preferential attachment graph, random geometric graph, inhomogeneous graph, we show that $tau_n$ is of logarithmic (resp. exponential) order when $lambda < lambda_c(G)$ (resp. $lambda < lambda_c(G)$). Moreover, in some cases we also prove metastable results: in the super-critical regime, $tau_n$ divided by its expectation converges in law to an exponential random variable with mean $1$, and the density of the infected sites is stable for a long time.
|
4 |
Analyse mathématique de méthodes numériques stochastiques en dynamique moléculaire / Mathematical analysis of stochastic numerical methods in molecular dynamicsAlrachid, Houssam 05 November 2015 (has links)
En physique statistique computationnelle, de bonnes techniques d'échantillonnage sont nécessaires pour obtenir des propriétés macroscopiques à travers des moyennes sur les états microscopiques. La principale difficulté est que ces états microscopiques sont généralement regroupés autour de configurations typiques, et un échantillonnage complet de l'espace configurationnel est donc typiquement très complexe à réaliser. Des techniques ont été proposées pour échantillonner efficacement les états microscopiques dans l'ensemble canonique. Un exemple important de quantités d'intérêt dans un tel cas est l'énergie libre. Le calcul d'énergie libre est très important dans les calculs de dynamique moléculaire, afin d'obtenir une description réduite d'un système physique complexe de grande dimension. La première partie de cette thèse est consacrée à une extension de la méthode adaptative de force biaisante classique (ABF), qui est utilisée pour calculer l'énergie libre associée à la mesure de Boltzmann-Gibbs et une coordonnée de réaction. Le problème de cette méthode est que le gradient approché de l'énergie libre, dit force moyenne, n'est pas un gradient en général. La contribution à ce domaine, présentée dans le chapitre 2, est de projeter la force moyenne estimée sur un gradient en utilisant la décomposition de Helmholtz. Dans la pratique, la nouvelle force gradient est obtenue à partir de la solution d'un problème de Poisson. En utilisant des techniques d'entropie, on étudie le comportement à la limite de l'équation de Fokker-Planck non linéaire associée au processus stochastique. On montre la convergence exponentielle vers l'équilibre de l'énergie libre estimée, avec un taux précis de convergence en fonction des constantes de l'inégalité de Sobolev logarithmiques des mesures canoniques conditionnelles à la coordonnée de réaction. L'intérêt de la méthode d'ABF projetée par rapport à l'approche originale ABF est que la variance de la nouvelle force moyenne est plus petite. On observe que cela implique une convergence plus rapide vers l'équilibre. En outre, la méthode permet d'avoir accès à une estimation de l'énergie libre en tout temps. La deuxième partie (voir le chapitre 3) est consacrée à étudier l'existence locale et globale, l'unicité et la régularité des solutions d'une équation non linéaire de Fokker-Planck associée à la méthode adaptative de force biaisante. Il s'agit d'un problème parabolique semilinéaire avec une non-linéarité non locale. L'équation de Fokker-Planck décrit l'évolution de la densité d'un processus stochastique associé à la méthode adaptative de force biaisante. Le terme non linéaire est non local et est utilisé lors de la simulation afin d'éliminer les caractéristiques métastables de la dynamique. Il est lié à une espérance conditionnelle qui définit la force biaisante. La preuve est basée sur des techniques de semi-groupe pour l'existence locale en temps, ainsi que sur une estimée a priori utilisant une sursolution pour montrer l'existence globale / In computational statistical physics, good sampling techniques are required to obtain macroscopic properties through averages over microscopic states. The main difficulty is that these microscopic states are typically clustered around typical configurations, and a complete sampling of the configurational space is thus in general very complex to achieve. Techniques have been proposed to efficiently sample the microscopic states in the canonical ensemble. An important example of quantities of interest in such a case is the free energy. Free energy computation techniques are very important in molecular dynamics computations, in order to obtain a coarse-grained description of a high-dimensional complex physical system. The first part of this thesis is dedicated to explore an extension of the classical adaptive biasing force (ABF) technique, which is used to compute the free energy associated to the Boltzmann-Gibbs measure and a reaction coordinate function. The problem of this method is that the approximated gradient of the free energy, called biasing force, is not a gradient. The contribution to this field, presented in Chapter 2, is to project the estimated biasing force on a gradient using the Helmholtz decomposition. In practice, the new gradient force is obtained by solving Poisson problem. Using entropy techniques, we study the longtime behavior of the nonlinear Fokker-Planck equation associated with the ABF process. We prove exponential convergence to equilibrium of the estimated free energy, with a precise rate of convergence in terms of the Logarithmic Sobolev inequality constants of the canonical measure conditioned to fixed values of the reaction coordinate. The interest of this projected ABF method compared to the original ABF approach is that the variance of the new biasing force is smaller, which yields quicker convergence to equilibrium. The second part, presented in Chapter 3, is dedicated to study local and global existence, uniqueness and regularity of the mild, Lp and classical solution of a nonlinear Fokker-Planck equation, arising in an adaptive biasing force method for molecular dynamics calculations. The partial differential equation is a semilinear parabolic initial boundary value problem with a nonlocal nonlinearity and periodic boundary conditions on the torus of dimension n, as presented in Chapter 3. The Fokker-Planck equation rules the evolution of the density of a given stochastic process that is a solution to Adaptive biasing force method. The nonlinear term is non local and is used during the simulation in order to remove the metastable features of the dynamics
|
Page generated in 0.0589 seconds