• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incorporation of protease-sensitive biomaterial degradation and tensile strain for applications in ligament-bone interface tissue engineering

Yang, Peter J. 02 November 2011 (has links)
The interface between tendon/ligament and bone tissue is a complex transition of biochemical, cellular, and mechanical properties. Investigating computational and tissue engineering models that imitate aspects of this interface may supply critical design parameters for designing future tissue replacements to promote increased biochemical and mechanical integration between tendon/ligament and bone. Strategies for modeling this tissue have typically focused on the development of heterogeneous structures to create gradients or multiphasic materials that mimic aspects of the transition. However, further work is required to elucidate the role of specific mechanical and material stimuli in recapitulating features of the tendon/ligament-bone insertion. In particular, in constructs that exhibit variation in both mechanical and biochemical properties, the interplay of mechanical, material, and chemical signals can complicate understanding of the particular factors at work in interface formation. Thus, the overall goal of this dissertation was to provide insight into the role of mechanical strain and scaffold degradability on cell behavior within heterogeneous biomaterials. Specifically, a method for determining cell vertical position within a degradable gel through a laminated interface was developed. A computational model was created to examine possible variation in local mechanical strain due to heterogeneity in mechanical properties and different interface geometries. Finally, the influence of biomaterial degradability on changes in encapsulated human mesenchymal stem cell morphology under response to cyclic mechanical strain was explored. Together, these studies provide insight into mechanical and material design considerations when devising tissue engineering strategies to regenerate the tendon/ligament-bone interface.
2

Material and mechanical emulation of the human hand

Hockings, Nicholas January 2017 (has links)
The hands and feet account for half of the complexity of the musculoskeletal system, while the skin of the hand is specialised with many important structures. Much of the subtlety of the mechanism of the hand lies in the soft tissues, and the tactile and proprioceptive sensitivity depends on the large number of mechanoreceptors embedded in specific structures of the soft tissues. This thesis investigates synthetic materials and manufacturing techniques to enable building robots that reproduce the biomechanics and tactile sensitivity of vertebrates – histomimetic robotics. The material and mechanical anatomy of the hand is reviewed, highlighting difficulty of numerical measurement in soft-tissue anatomy, and the predictive nature of descriptive anatomical knowledge. The biomechanical mechanisms of the hand and their support of sensorimotor control are presented. A palate of materials and layup techniques are identified for emulating ligaments, joint surfaces, tendon networks, sheaths, soft matrices, and dermal structures. A method for thermoplastically drawing fine elastic fibres, with liquid metal amalgam cores, for connecting embedded sensors is demonstrated. The performance requirements of skeletal muscles are identified. Two classes of muscle-like bulk MEMS electrostatic actuators are shown theoretically to be capable of meeting these requirements. Means to manufacture them, and their additional application as mechanoreceptors are described. A novel machine perception algorithm is outlined as a solution to the problem of measuring soft tissue anatomy, CAD/CAE/CNC for layup of histomimetic robots, and sensory perception by such robots. The results of the work support the view that histomimetic robotics is a viable approach, and identify a number of areas for further investigation including: polymer modification by graft-polymerisation, automated layup tools, and machine perception.

Page generated in 0.085 seconds