• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efeitos do treinamento excêntrico isocinético sobre as propriedades musculotendíneas de flexores plantares de indivíduos saudáveis

Geremia, Jeam Marcel January 2016 (has links)
O exercício excêntrico tem sido utilizado na prevenção/reabilitação de lesões e em programas de treinamento de força para melhorar o condicionamento físico de indivíduos saudáveis. O entendimento das adaptações causadas pelo treinamento excêntrico nos músculos flexores plantares se justifica: 1) pela importância desta musculatura na manutenção de posturas e no ciclo da marcha; 2) pela alta incidência de lesões do tendão de Aquiles; e 3) pelo uso sistemático deste tipo de treinamento em programas de prevenção e reabilitação do tríceps sural. Assim, a presente tese de doutorado busca verificar os efeitos do treinamento excêntrico nas propriedades neuromecânicas e morfológicas dos músculos flexores plantares. No capítulo I foram compiladas informações acerca das adaptações neuromusculares dos flexores plantares e do tendão de Aquiles de indivíduos saudáveis submetidos à programas de treinamento excêntrico. Os estudos encontrados indicam que o treinamento excêntrico pode aumentar a produção de força e ativação muscular, especialmente em testes excêntricos. No entanto, resultados conflitantes e lacunas identificadas na literatura motivaram a realização de dois estudos originais. Os objetivos dos estudos originais foram: 1) determinar a temporalidade das adaptações na ativação e massa muscular de flexores plantares, bem como sua contribuição para os ganhos de força em contrações excêntricas, isométricas e concêntricas ao longo do programa de treinamento (Capítulo II); e 2) avaliar os efeitos de 12 semanas de treinamento excêntrico nas propriedades morfológicas, mecânicas e materiais do tendão de Aquiles de indivíduos saudáveis (Capítulo III). Vinte participantes do sexo masculino realizaram um programa de treinamento excêntrico isocinético (duas vezes por semana, 3-5 séries de 10 repetições máximas). As avaliações das propriedades neuromecânicas e morfológicas dos flexores plantares foram realizadas a cada quatro semanas. Ao final de 12 semanas, o programa de treinamento excêntrico aumentou a produção de torque máximo excêntrico, isométrico e concêntrico; aumentou a atividade eletromiográfica máxima excêntrica e isométrica; e aumentou a espessura muscular. Além disso, os ângulos do pico de torque excêntrico e concêntrico foram deslocados para posições em que os músculos estavam mais alongados. O torque máximo e a espessura muscular aumentaram progressivamente até a oitava semana de treinamento. A ativação neural durante contrações excêntricas e isométricas aumentou após quatro semanas de treino e permaneceu constante até o final do treinamento, enquanto que a ativação neural durante contrações concêntricas permaneceu inalterada durante todo o período de treinamento. Além disso, houve aumento da área de secção transversa, da rigidez e do módulo de Young do tendão de Aquiles. Os incrementos na rigidez e no módulo de Young foram observados após quatro semanas de treinamento, enquanto que o aumento significativo da área de secção transversa tendínea ocorreu após oito semanas de treinamento. Quando tomados em conjunto, estes resultados nos possibilitam entender de que forma as adaptações neuromecânicas e morfológicas dos flexores plantares ocorrem. O aumento da força isométrica e excêntrica nas primeiras quatro semanas de treinamento parece ocorrer devido a adaptações neurais, musculares e tendíneas. No entanto, após maiores períodos de treinamento (i.e. acima de quatro semanas), o aumento da força ocorre devido a incrementos na massa muscular e na rigidez tendínea. Além disso, a ausência de adaptações neurais evidencia que os ganhos de força concêntrica podem estar relacionados apenas com adaptações musculares e tendíneas. / Eccentric exercises are commonly used in prevention, rehabilitation and conditioning training programs. Understanding the adaptations caused by eccentric training on the plantar flexor muscles is justified by: 1) the importance of these muscles in maintaining posture and during gait cycle; 2) the high incidence of Achilles tendon injuries; and 3) the systematic use of this type of training in triceps surae prevention and rehabilitation programs. Thus, the present PhD thesis aims to verify the effects of eccentric training in neuromechanical and morphological properties of the plantar flexor muscles. Chapter I compiled information about the neuromuscular adaptations of the plantar flexors and Achilles tendon of healthy subjects undergoing eccentric training programs. The studies found indicate that eccentric training can increase the production of muscle strength and muscle activation, especially in eccentric tests. The studies found indicate that eccentric training can increase muscle strength and muscle activation, especially in eccentric tests. The purposes of the original studies were: 1) to determine the adaptations time course in plantar flexors activation and muscle mass, as well as their contribution to the strength gains in eccentric, isometric and concentric contractions during the training program (Chapter II); and 2) to evaluate the effects of 12 weeks of eccentric training on Achilles tendon morphological, mechanical and material properties in healthy subjects (Chapter III). Twenty male subjects performed an eccentric isokinetic training program (twice a week, 3-5 sets of 10 maximal repetitions). Plantar flexor neuromechanical and morphological evaluations were performed every 4 weeks. The 12-week training program led to increases in maximum eccentric, isometric and concentric torques; maximum eccentric and isometric electromyographic activity; and muscle thickness. The angles of peak torque in eccentric and concentric tests were shifted towards longer muscle lengths. Maximum torque and muscle thickness increased progressively until the 8th training week. Eccentric and isometric activation increased up to the 4th training week and remained constant until the 12th training week, while no change was found in concentric activation. In addition, Achilles tendon cross-sectional area, stiffness and Young's modulus were increased. The increases in stiffness and Young's modulus were observed after four weeks of training, while the significant increase in tendon cross-sectional area occurred after eight weeks of training. Taken together, these results allow us to understand how the neuromechanical and morphologic adaptations occur in the plantar flexors muscles subjected to a 12-week eccentric training program. The increase in isometric and eccentric strength in the first four weeks of training seems to be related to neural, morphological and tendinous adaptations. However, after longer training periods (i.e. up to four weeks), the strength increase is due to increases in muscle mass and tendon stiffness. Moreover, the absence of evidence in terms of neural adaptations during concentric contractions suggest that the concentric strength gains seem to be related only with muscle and tendon adaptations.
2

The effects of a short-term plyometrics program on the running economy and Achilles tendon properties of female distance runners

de la Cruz, Lemmuel Domingo Unknown Date
No description available.
3

The effects of a short-term plyometrics program on the running economy and Achilles tendon properties of female distance runners

de la Cruz, Lemmuel Domingo 11 1900 (has links)
This study examined the effects of plyometrics on running economy, performance, and Achilles tendon properties in female distance runners. Seventeen University athletes matched by running economy were randomly assigned to an experimental group that received supplementary plyometrics training (n=9) or a control group that performed run-training only (n=8). Subject attrition led to a final sample of twelve runners (6 experimental, 6 controls). Measurements were made pre-post an 8-week training period. Running economy was measured as oxygen consumption at three submaximal speeds, performance as time to run 3000 meters, and Achilles tendon properties were estimated via ultrasound during ramp, quasi-isometric plantar flexion to maximum on an isokinetic dynamometer. No significant differences were found between the two groups after eight weeks because of poor subject compliance and excessive variability in ultrasound measurements. The results are inconclusive as to the effect of supplementary plyometric training on running economy, performance and Achilles tendon properties.
4

Efeitos do treinamento excêntrico isocinético sobre as propriedades musculotendíneas de flexores plantares de indivíduos saudáveis

Geremia, Jeam Marcel January 2016 (has links)
O exercício excêntrico tem sido utilizado na prevenção/reabilitação de lesões e em programas de treinamento de força para melhorar o condicionamento físico de indivíduos saudáveis. O entendimento das adaptações causadas pelo treinamento excêntrico nos músculos flexores plantares se justifica: 1) pela importância desta musculatura na manutenção de posturas e no ciclo da marcha; 2) pela alta incidência de lesões do tendão de Aquiles; e 3) pelo uso sistemático deste tipo de treinamento em programas de prevenção e reabilitação do tríceps sural. Assim, a presente tese de doutorado busca verificar os efeitos do treinamento excêntrico nas propriedades neuromecânicas e morfológicas dos músculos flexores plantares. No capítulo I foram compiladas informações acerca das adaptações neuromusculares dos flexores plantares e do tendão de Aquiles de indivíduos saudáveis submetidos à programas de treinamento excêntrico. Os estudos encontrados indicam que o treinamento excêntrico pode aumentar a produção de força e ativação muscular, especialmente em testes excêntricos. No entanto, resultados conflitantes e lacunas identificadas na literatura motivaram a realização de dois estudos originais. Os objetivos dos estudos originais foram: 1) determinar a temporalidade das adaptações na ativação e massa muscular de flexores plantares, bem como sua contribuição para os ganhos de força em contrações excêntricas, isométricas e concêntricas ao longo do programa de treinamento (Capítulo II); e 2) avaliar os efeitos de 12 semanas de treinamento excêntrico nas propriedades morfológicas, mecânicas e materiais do tendão de Aquiles de indivíduos saudáveis (Capítulo III). Vinte participantes do sexo masculino realizaram um programa de treinamento excêntrico isocinético (duas vezes por semana, 3-5 séries de 10 repetições máximas). As avaliações das propriedades neuromecânicas e morfológicas dos flexores plantares foram realizadas a cada quatro semanas. Ao final de 12 semanas, o programa de treinamento excêntrico aumentou a produção de torque máximo excêntrico, isométrico e concêntrico; aumentou a atividade eletromiográfica máxima excêntrica e isométrica; e aumentou a espessura muscular. Além disso, os ângulos do pico de torque excêntrico e concêntrico foram deslocados para posições em que os músculos estavam mais alongados. O torque máximo e a espessura muscular aumentaram progressivamente até a oitava semana de treinamento. A ativação neural durante contrações excêntricas e isométricas aumentou após quatro semanas de treino e permaneceu constante até o final do treinamento, enquanto que a ativação neural durante contrações concêntricas permaneceu inalterada durante todo o período de treinamento. Além disso, houve aumento da área de secção transversa, da rigidez e do módulo de Young do tendão de Aquiles. Os incrementos na rigidez e no módulo de Young foram observados após quatro semanas de treinamento, enquanto que o aumento significativo da área de secção transversa tendínea ocorreu após oito semanas de treinamento. Quando tomados em conjunto, estes resultados nos possibilitam entender de que forma as adaptações neuromecânicas e morfológicas dos flexores plantares ocorrem. O aumento da força isométrica e excêntrica nas primeiras quatro semanas de treinamento parece ocorrer devido a adaptações neurais, musculares e tendíneas. No entanto, após maiores períodos de treinamento (i.e. acima de quatro semanas), o aumento da força ocorre devido a incrementos na massa muscular e na rigidez tendínea. Além disso, a ausência de adaptações neurais evidencia que os ganhos de força concêntrica podem estar relacionados apenas com adaptações musculares e tendíneas. / Eccentric exercises are commonly used in prevention, rehabilitation and conditioning training programs. Understanding the adaptations caused by eccentric training on the plantar flexor muscles is justified by: 1) the importance of these muscles in maintaining posture and during gait cycle; 2) the high incidence of Achilles tendon injuries; and 3) the systematic use of this type of training in triceps surae prevention and rehabilitation programs. Thus, the present PhD thesis aims to verify the effects of eccentric training in neuromechanical and morphological properties of the plantar flexor muscles. Chapter I compiled information about the neuromuscular adaptations of the plantar flexors and Achilles tendon of healthy subjects undergoing eccentric training programs. The studies found indicate that eccentric training can increase the production of muscle strength and muscle activation, especially in eccentric tests. The studies found indicate that eccentric training can increase muscle strength and muscle activation, especially in eccentric tests. The purposes of the original studies were: 1) to determine the adaptations time course in plantar flexors activation and muscle mass, as well as their contribution to the strength gains in eccentric, isometric and concentric contractions during the training program (Chapter II); and 2) to evaluate the effects of 12 weeks of eccentric training on Achilles tendon morphological, mechanical and material properties in healthy subjects (Chapter III). Twenty male subjects performed an eccentric isokinetic training program (twice a week, 3-5 sets of 10 maximal repetitions). Plantar flexor neuromechanical and morphological evaluations were performed every 4 weeks. The 12-week training program led to increases in maximum eccentric, isometric and concentric torques; maximum eccentric and isometric electromyographic activity; and muscle thickness. The angles of peak torque in eccentric and concentric tests were shifted towards longer muscle lengths. Maximum torque and muscle thickness increased progressively until the 8th training week. Eccentric and isometric activation increased up to the 4th training week and remained constant until the 12th training week, while no change was found in concentric activation. In addition, Achilles tendon cross-sectional area, stiffness and Young's modulus were increased. The increases in stiffness and Young's modulus were observed after four weeks of training, while the significant increase in tendon cross-sectional area occurred after eight weeks of training. Taken together, these results allow us to understand how the neuromechanical and morphologic adaptations occur in the plantar flexors muscles subjected to a 12-week eccentric training program. The increase in isometric and eccentric strength in the first four weeks of training seems to be related to neural, morphological and tendinous adaptations. However, after longer training periods (i.e. up to four weeks), the strength increase is due to increases in muscle mass and tendon stiffness. Moreover, the absence of evidence in terms of neural adaptations during concentric contractions suggest that the concentric strength gains seem to be related only with muscle and tendon adaptations.
5

Efeitos do treinamento excêntrico isocinético sobre as propriedades musculotendíneas de flexores plantares de indivíduos saudáveis

Geremia, Jeam Marcel January 2016 (has links)
O exercício excêntrico tem sido utilizado na prevenção/reabilitação de lesões e em programas de treinamento de força para melhorar o condicionamento físico de indivíduos saudáveis. O entendimento das adaptações causadas pelo treinamento excêntrico nos músculos flexores plantares se justifica: 1) pela importância desta musculatura na manutenção de posturas e no ciclo da marcha; 2) pela alta incidência de lesões do tendão de Aquiles; e 3) pelo uso sistemático deste tipo de treinamento em programas de prevenção e reabilitação do tríceps sural. Assim, a presente tese de doutorado busca verificar os efeitos do treinamento excêntrico nas propriedades neuromecânicas e morfológicas dos músculos flexores plantares. No capítulo I foram compiladas informações acerca das adaptações neuromusculares dos flexores plantares e do tendão de Aquiles de indivíduos saudáveis submetidos à programas de treinamento excêntrico. Os estudos encontrados indicam que o treinamento excêntrico pode aumentar a produção de força e ativação muscular, especialmente em testes excêntricos. No entanto, resultados conflitantes e lacunas identificadas na literatura motivaram a realização de dois estudos originais. Os objetivos dos estudos originais foram: 1) determinar a temporalidade das adaptações na ativação e massa muscular de flexores plantares, bem como sua contribuição para os ganhos de força em contrações excêntricas, isométricas e concêntricas ao longo do programa de treinamento (Capítulo II); e 2) avaliar os efeitos de 12 semanas de treinamento excêntrico nas propriedades morfológicas, mecânicas e materiais do tendão de Aquiles de indivíduos saudáveis (Capítulo III). Vinte participantes do sexo masculino realizaram um programa de treinamento excêntrico isocinético (duas vezes por semana, 3-5 séries de 10 repetições máximas). As avaliações das propriedades neuromecânicas e morfológicas dos flexores plantares foram realizadas a cada quatro semanas. Ao final de 12 semanas, o programa de treinamento excêntrico aumentou a produção de torque máximo excêntrico, isométrico e concêntrico; aumentou a atividade eletromiográfica máxima excêntrica e isométrica; e aumentou a espessura muscular. Além disso, os ângulos do pico de torque excêntrico e concêntrico foram deslocados para posições em que os músculos estavam mais alongados. O torque máximo e a espessura muscular aumentaram progressivamente até a oitava semana de treinamento. A ativação neural durante contrações excêntricas e isométricas aumentou após quatro semanas de treino e permaneceu constante até o final do treinamento, enquanto que a ativação neural durante contrações concêntricas permaneceu inalterada durante todo o período de treinamento. Além disso, houve aumento da área de secção transversa, da rigidez e do módulo de Young do tendão de Aquiles. Os incrementos na rigidez e no módulo de Young foram observados após quatro semanas de treinamento, enquanto que o aumento significativo da área de secção transversa tendínea ocorreu após oito semanas de treinamento. Quando tomados em conjunto, estes resultados nos possibilitam entender de que forma as adaptações neuromecânicas e morfológicas dos flexores plantares ocorrem. O aumento da força isométrica e excêntrica nas primeiras quatro semanas de treinamento parece ocorrer devido a adaptações neurais, musculares e tendíneas. No entanto, após maiores períodos de treinamento (i.e. acima de quatro semanas), o aumento da força ocorre devido a incrementos na massa muscular e na rigidez tendínea. Além disso, a ausência de adaptações neurais evidencia que os ganhos de força concêntrica podem estar relacionados apenas com adaptações musculares e tendíneas. / Eccentric exercises are commonly used in prevention, rehabilitation and conditioning training programs. Understanding the adaptations caused by eccentric training on the plantar flexor muscles is justified by: 1) the importance of these muscles in maintaining posture and during gait cycle; 2) the high incidence of Achilles tendon injuries; and 3) the systematic use of this type of training in triceps surae prevention and rehabilitation programs. Thus, the present PhD thesis aims to verify the effects of eccentric training in neuromechanical and morphological properties of the plantar flexor muscles. Chapter I compiled information about the neuromuscular adaptations of the plantar flexors and Achilles tendon of healthy subjects undergoing eccentric training programs. The studies found indicate that eccentric training can increase the production of muscle strength and muscle activation, especially in eccentric tests. The studies found indicate that eccentric training can increase muscle strength and muscle activation, especially in eccentric tests. The purposes of the original studies were: 1) to determine the adaptations time course in plantar flexors activation and muscle mass, as well as their contribution to the strength gains in eccentric, isometric and concentric contractions during the training program (Chapter II); and 2) to evaluate the effects of 12 weeks of eccentric training on Achilles tendon morphological, mechanical and material properties in healthy subjects (Chapter III). Twenty male subjects performed an eccentric isokinetic training program (twice a week, 3-5 sets of 10 maximal repetitions). Plantar flexor neuromechanical and morphological evaluations were performed every 4 weeks. The 12-week training program led to increases in maximum eccentric, isometric and concentric torques; maximum eccentric and isometric electromyographic activity; and muscle thickness. The angles of peak torque in eccentric and concentric tests were shifted towards longer muscle lengths. Maximum torque and muscle thickness increased progressively until the 8th training week. Eccentric and isometric activation increased up to the 4th training week and remained constant until the 12th training week, while no change was found in concentric activation. In addition, Achilles tendon cross-sectional area, stiffness and Young's modulus were increased. The increases in stiffness and Young's modulus were observed after four weeks of training, while the significant increase in tendon cross-sectional area occurred after eight weeks of training. Taken together, these results allow us to understand how the neuromechanical and morphologic adaptations occur in the plantar flexors muscles subjected to a 12-week eccentric training program. The increase in isometric and eccentric strength in the first four weeks of training seems to be related to neural, morphological and tendinous adaptations. However, after longer training periods (i.e. up to four weeks), the strength increase is due to increases in muscle mass and tendon stiffness. Moreover, the absence of evidence in terms of neural adaptations during concentric contractions suggest that the concentric strength gains seem to be related only with muscle and tendon adaptations.
6

The influence of training and athletic performance on the neural and mechanical determinants of muscular rate of force development

Tillin, Neale A. January 2011 (has links)
Neuromuscular explosive strength (defined as rate of force development; RFD) is considered important during explosive functional human movements; however this association has been poorly documented. It is also unclear how different variants of strength training may influence RFD and its neuromuscular determinants. Furthermore, RFD has typically been measured in isometric situations, but how it is influenced by the types of contraction (isometric, concentric, eccentric) is unknown. This thesis compared neuromuscular function in explosive power athletes (athletes) and untrained controls, and assessed the relationship between RFD in isometric squats with sprint and jump performance. The athletes achieved a greater RFD normalised to maximum strength (+74%) during the initial phase of explosive contractions, due to greater agonist activation (+71%) in this time. Furthermore, there were strong correlations (r2 = 0.39) between normalised RFD in the initial phase of explosive squats and sprint performance, and between later phase absolute explosive force and jump height (r2 = 0.37), confirming an association between explosive athletic performance and RFD. This thesis also assessed the differential effects of short-term (4 weeks) training for maximum vs. explosive strength, and whilst the former increased maximum strength (+20%) it had no effect on RFD. In contrast explosive strength training improved explosive force production over short (first 50 ms; +70%) and long (>50 ms; +15%) time periods, due to improved agonist activation (+65%) and maximum strength (+11%), respectively. Explosive strength training therefore appears to have greater functional benefits than maximum strength training. Finally, the influence of contraction type on RFD was assessed, and the results provided unique evidence that explosive concentric contractions are 60% more effective at utilising the available force capacity of the muscle, that was explained by superior agonist activation. This work provides a comprehensive analysis of the association between athletic performance and RFD, the differential effects of maximum vs. explosive strength training, and the influence of contraction type on the capacity for RFD.
7

Muscle-tendon unit morphology, architecture and stiffness in relation to strength and responses to strength training

Massey, Garry J. January 2017 (has links)
This thesis examined the change in skeletal muscle architecture with contractile force production, the relationship of architecture with muscle strength parameters and if muscle tendinous tissue stiffness determines in vivo explosive strength (i.e. rate of torque development, RTD). Muscle and tendinous tissue adaptations to contrasting strength training regimes, and the potential capacity of these tissues to adapt following chronic strength training were also explored. Quadriceps femoris fascicle length (FL) decreased, while the pennation angle (PA) increased in a curvi-linearly manner from rest to maximal voluntary contraction (MVC) torque. Consequently, effective physiological cross-sectional area (effPCSA) during MVC was 27% greater than at rest, although effPCSA measured at rest and during MVC had similar correlations to maximal strength. In the earliest phase of contraction, FL, but not PA, was negatively related (R2=0.187) to voluntary RTD. Neither FL nor PA was related to maximal isometric or dynamic strength. Muscle-tendon unit (MTU) and patellar tendon (PT) stiffness were unrelated to voluntary and evoked RTD. Relative PT stiffness was also unrelated to relative RTD, although relative MTU stiffness was related to voluntary RTD (25-55%MVT, R2≤0.188) and evoked RTD (5-50%MVT, R2≤0.194). MTU stiffness increased after sustained-contraction (SCT, +21%), though not explosive-contraction strength training (ECT). PT stiffness increased similarly after ECT (+20%) and SCT (+16%), yet neither induced tendon hypertrophy. SCT produced modest muscle (+8%) and aponeurosis (+7%) hypertrophy. Chronic strength trained (CST: >3 years) males had substantially greater muscle and aponeurosis size, but similar tendon size as untrained controls (UNT) and short-term (12 weeks) strength trained (STT) individuals. Between these groups, at the highest common force, MTU stiffness was indifferent, while PT stiffness was similarly greater in STT and CST than UNT. These results suggest FL and PA have little influence on muscle strength and tendon stiffness has no influence on RTD. Maximum strength negated any qualitative influence of MTU stiffness on in vivo RTD. Component MTU tissues (muscle-aponeurosis vs. external tendon) adapt differentially depending on the strength training regime. Specifically, free tendon appeared to adapt to high magnitude loading, while loading duration is also an important stimulus for the muscle-aponeurosis. However, chronic strength training was not concordant with greater higher force MTU stiffness, and does not further increase higher force PT stiffness beyond the adaptations that occur after 12 weeks of strength training. Finally, no evidence was found for tendon hypertrophy in response to strength training.
8

Effets aigus des étirements statiques et dynamiques sur le système neuromusculaire / Acute effects of static and dynamic stretching on the neuromuscular system

Opplert, Jules-Antoine 06 June 2019 (has links)
Dans un contexte de performance sportive, de réhabilitation ou de santé, les étirements sont couramment utilisés dans le but de préparer le système neuromusculaire à l’exercice subséquent. Si la littérature montre majoritairement que les étirements altèrent de façon aigue la performance musculaire et/ou fonctionnelle, il existe toutefois des études dont les résultats diffèrent, suggérant l’influence d’un certain nombre de facteurs sur la variabilité des réponses du système neuromusculaire. Pour une meilleure compréhension de cette variabilité et des mécanismes impliqués, cette thèse avait pour objectif d’examiner l’influence de différents paramètres sur le système neuromusculaire : la durée d’étirement, le groupe musculaire et la modalité d’étirement. Au travers de quatre études, il a été montré que les étirements statiques pouvaient altérer la production de force maximale et les propriétés neuromusculaires indépendamment de la durée d’étirement. Cependant, il est apparu que ces modulations étaient spécifiques au muscle, et plus précisément à la raideur relative du système musculo-tendineux. Indépendamment de la durée d’étirement, les étirements statiques ne seraient pas efficaces pour préparer le système neuromusculaire à une activité musculaire subséquente, et notamment pour des muscles raides. Plus particulièrement, les étirements dynamiques ne paraissent pas plus efficaces. Même si les effets néfastes ont été diminués comparativement aux étirements statiques, ils ne favoriseraient pas davantage la production de force ni la commande nerveuse. Toutefois, il est intéressant de noter qu’une durée courte d’étirements dynamiques peut réduire la résistance passive à l’étirement, et donc augmenter potentiellement l’amplitude articulaire maximale, sans affecter les capacités de production de force. Finalement, les étirements dynamiques pourraient être envisagés comme une activité musculaire dynamique, qui compense partiellement les effets néfastes de l’étirement sur la performance musculaire. D’un point de vue pratique, ceci suggère que ce type d’étirements peut être réalisé avant une performance, mais néanmoins accompagnés d’une activité musculaire de plus haute intensité, afin d’optimiser les effets de l’échauffement musculaire sur le système neuromusculaire. En définitive, la variabilité des réponses du système neuromusculaire serait dépendante de facteurs spécifiques, tels que la modalité d’étirement et la raideur relative du système musculo-tendineux, soulignant l’importance de les prendre en considération dans la pratique. / Stretching is traditionally incorporated into pre-exercise routines in health, rehabilitation and sporting environments to condition the neuromuscular system for exercise. While a large body of evidence reported that stretching may acutely impair the subsequent muscular performance, some conflicting results highlight possible mitigating factors of neuromuscular responses variability. Because the limited data available do not present a clear consensus, the aim of this thesis was to investigate the effects of different factors on neuromuscular responses to stretch: the muscle group, the stretch duration and modality. By means of four studies, it has been shown that static stretching may alter maximal voluntary torque and neuromuscular properties, irrespective of the stretch duration. However, these modulations were dependent on the muscle group, and more specifically on the intrinsic stiffness of the muscle-tendon system. Regardless of the stretch duration, static stretching appears to be not effective, or even detrimental, to prepare the musculotendinous system for subsequent exercises, and especially for stiff muscles. It is also relevant that dynamic stretching was not better than static stretching. Even if stretch-induced impairments were mitigated compared to static stretching, dynamic stretching would not optimize muscle strength capacities and central nervous system. However, a short duration of dynamic stretching may be sufficient to reduce passive resistive torque, and therefore potentially increase maximal range of motion, without affecting muscle strength capacities. Finally, dynamic stretching could be considered as dynamic muscle activity, which would partly counteract deleterious muscle-tendon stretching effects. From a practical point of view, dynamic stretching could be a part of warm-up procedure, but should be associated to stronger contractions to optimize the improvement in muscle strength capacities. In summary, the variability of neuromuscular responses to stretch would be dependent on specific factors, such as stretching modality and relative stiffness of the musculotendinous system, emphasizing the importance of taking it into consideration in practice.

Page generated in 0.2938 seconds