Spelling suggestions: "subject:"tensorzerlegung"" "subject:"tensorzerlegungs""
1 |
Tensor Decomposition for Motion Artifact Removal in Wireless ECGLilienthal, Jannis 03 December 2021 (has links)
The aging population requires new and innovative approaches to monitor and supervise medical and physical conditions in residential environments. For this purpose, various sensor and hardware systems are being developed by researchers and industrial companies. One way to monitor health status is the electrocardiogram (ECG), which noninvasively measures heart activity on the body surface. These measurements provide a simple and easy way to monitor health on a continuous basis. However, the use of ECG measurements outside a confined clinical setting, beyond purely medical purposes, is associated with considerable disadvantages resulting from the given freedom of movement. In this work, a substantial noise source in mobile ECG is examined: Motion artifacts. We study the spectral characteristics of motion artifacts for a set of different motions representing everyday activities, namely: standing up, bending forward, walking, running, jumping, and climbing stairs. Furthermore, we investigate to what extent the reference sensors (accelerometer, gyroscope, and skin-electrode impedance) are able to characterize and remove the recorded motion artifacts from the measurements. Our results demonstrate that motion artifacts markedly change their characteristics with a change in motion. While lowintensity movements manifest in lower frequency bands, higher intensity exercises provoke motion artifacts that are much more complex in their composition. These characteristics are correspondingly reflected in the correlation between reference sensors and artifacts. To overcome the drawbacks of motion artifacts in mobile measurements, we propose the application of tensor decomposition using canonical polyadic decomposition (CPD) as an example. A significant advantage of tensor factorization is that it can decompose the data without artificial constraints, unlike matrix factorization. We use CPD along with measurements obtained from different reference sensors to remove the artifacts. Wavelet transformation is utilized to transform ECG and reference data from vector to matrix format. Subsequently, a tensor is constructed by combining the heterogeneous measurements into a three-dimensional tensor. In this way, it is possible to access temporal and spectral features within the data simultaneously. Subsequently, we propose a methodology to predict the decomposition rank based on statistical features in the ECG that quantify the signal quality. To evaluate the performance of the decomposition process, we combine isolated motion artifacts recorded at the back with ECG obtained in rest to generate artificially corrupted data. The results suggest that CPD successfully removes motion artifacts from the data for all reference sensors regarded.
|
2 |
Anwendung von Tensorapproximationen auf die Full Configuration Interaction MethodeBöhm, Karl-Heinz 12 September 2016 (has links) (PDF)
In dieser Arbeit werden verschiedene Ansätze untersucht, um Tensorzerlegungsmethoden auf die Full-Configuration-Interaction-Methode (FCI) anzuwenden. Das Ziel dieser Ansätze ist es, zuverlässig konvergierende Algorithmen zu erstellen, welche es erlauben, die Wellenfunktion effizient im Canonical-Product-Tensorformat (CP) zu approximieren. Hierzu werden drei Ansätze vorgestellt, um die FCI-Wellenfunktion zu repräsentieren und darauf basierend die benötigten Koeffizienten zu bestimmen.
Der erste Ansatz beruht auf einer Entwicklung der Wellenfunktion als Linearkombination von Slaterdeterminanten, bei welcher in einer Hierarchie ausgehend von der Hartree-Fock-Slaterdeterminante sukzessive besetzte Orbitale durch virtuelle Orbitale ersetzt werden. Unter Nutzung von Tensorrepräsentationen im CP wird ein lineares Gleichungssystem gelöst, um die FCI-Koeffizienten zu bestimmen.
Im darauf folgenden Ansatz, welcher an Direct-CI angelehnt ist, werden Tensorrepräsentationen der Hamiltonmatrix und des Koeffizientenvektors aufgestellt, welche zur Lösung des FCI-Eigenwertproblems erforderlich sind. Hier wird ein Algorithmus vorgestellt, mit welchem das Eigenwertproblem im CP gelöst wird.
In einem weiteren Ansatz wird die Repräsentation der Hamiltonmatrix und des Koeffizientenvektors im Fockraum formuliert. Dieser Ansatz erlaubt die Lösung des FCI-Eigenwertproblems mit Hilfe verschiedener Algorithmen. Diese orientieren sich an den Rayleighquotienteniterationen oder dem Davidsonalgorithmus, wobei für den ersten Algorithmus eine zweite Version entwickelt wurde, wo die Rangreduktion teilweise durch Projektionen ersetzt wurde. Für den Davidsonalgorithmus ist ein breiteres Spektrum von Molekülen behandelbar und somit können erste Untersuchungen zur Skalierung und zu den zu erwartenden Fehlern vorgestellt werden.
Schließlich wird ein Ausblick auf mögliche Weiterentwicklungen gegeben, welche eine effizientere Berechnung ermöglichen und somit FCI im CP auch für größere Moleküle zugänglich macht. / In this thesis, various approaches are investigated to apply tensor decomposition methods to the Full Configuration Interaction method (FCI). The aim of these approaches is the development of algorithms, which converge reliably and which permit to approximate the wave function efficiently in the Canonical Product format (CP). Three approaches are introduced to represent the FCI wave function and to obtain the corresponding coefficients.
The first approach ist based on an expansion of the wave function as a linear combination of slater determinants. In this hierarchical expansion, starting from the Hartree Fock slater determinant, the occupied orbitals are substituted by virtual orbitals. Using tensor representations in the CP, a linear system of equations is solved to obtain the FCI coefficients.
In a further approach, tensor representations of the Hamiltonian matrix and the coefficient vectors are set up, which are required to solve the FCI eigenvalue problem. The tensor contractions and an algorithm to solve the eigenvalue problem in the CP are explained her in detail.
In the next approach, tensor representations of the Hamiltonian matrix and the coefficient vector are constructed in the Fock space. This approach allows the application of various algorithms. They are based on the Rayleight Quotient Algorithm and the Davidson algorithm and for the first one, there exists a second version, where the rank reduction algorithm is replaced by projections. The Davidson algorithm allows to treat a broader spectrum of molecules. First investigations regarding the scaling behaviour and the expectable errors can be shown for this approach. Finally, an outlook on the further development is given, that allows for more efficient calculations and makes FCI in the CP accessible for larger molecules.
|
3 |
Low-Rank Tensor Approximation in post Hartree-Fock MethodsBenedikt, Udo 24 February 2014 (has links) (PDF)
In this thesis the application of novel tensor decomposition and tensor representation techniques in highly accurate post Hartree-Fock methods is evaluated. These representation techniques can help to overcome the steep scaling behaviour of high level ab-initio calculations with increasing system size and therefore break the "curse of dimensionality". After a comparison of various tensor formats the application of the "canonical polyadic" format (CP) is described in detail. There, especially the casting of a normal, index based tensor into the CP format (tensor decomposition) and a method for a low rank approximation (rank reduction) of the two-electron integrals in the AO basis are investigated. The decisive quantity for the applicability of the CP format is the scaling of the rank with increasing system and basis set size. The memory requirements and the computational effort for tensor manipulations in the CP format are only linear in the number of dimensions but still depend on the expansion length (rank) of the approximation. Furthermore, the AO-MO transformation and a MP2 algorithm with decomposed tensors in the CP format is evaluated and the scaling with increasing system and basis set size is investigated. Finally, a Coupled-Cluster algorithm based only on low-rank CP representation of the MO integrals is developed. There, especially the successive tensor contraction during the iterative solution of the amplitude equations and the error propagation upon multiple application of the reduction procedure are discussed. In conclusion the overall complexity of a Coupled-Cluster procedure with tensors in CP format is evaluated and some possibilities for improvements of the rank reduction procedure tailored to the needs in electronic structure calculations are shown. / Die vorliegende Arbeit beschäftigt sich mit der Anwendung neuartiger Tensorzerlegungs- und Tensorrepesentationstechniken in hochgenauen post Hartree-Fock Methoden um das hohe Skalierungsverhalten dieser Verfahren mit steigender Systemgröße zu verringern und somit den "Fluch der Dimensionen" zu brechen. Nach einer vergleichenden Betrachtung verschiedener Representationsformate wird auf die Anwendung des "canonical polyadic" Formates (CP) detailliert eingegangen. Dabei stehen zunächst die Umwandlung eines normalen, indexbasierten Tensors in das CP Format (Tensorzerlegung) und eine Methode der Niedrigrang Approximation (Rangreduktion) für Zweielektronenintegrale in der AO Basis im Vordergrund. Die entscheidende Größe für die Anwendbarkeit ist dabei das Skalierungsverhalten das Ranges mit steigender System- und Basissatzgröße, da der Speicheraufwand und die Berechnungskosten für Tensormanipulationen im CP Format zwar nur noch linear von der Anzahl der Dimensionen des Tensors abhängen, allerdings auch mit der Expansionslänge (Rang) skalieren. Im Anschluss wird die AO-MO Transformation und der MP2 Algorithmus mit zerlegten Tensoren im CP Format diskutiert und erneut das Skalierungsverhalten mit steigender System- und Basissatzgröße untersucht. Abschließend wird ein Coupled-Cluster Algorithmus vorgestellt, welcher ausschließlich mit Tensoren in einer Niedrigrang CP Darstellung arbeitet. Dabei wird vor allem auf die sukzessive Tensorkontraktion während der iterativen Bestimmung der Amplituden eingegangen und die Fehlerfortpanzung durch Anwendung des Rangreduktions-Algorithmus analysiert. Abschließend wird die Komplexität des gesamten Verfahrens bewertet und Verbesserungsmöglichkeiten der Reduktionsprozedur aufgezeigt.
|
4 |
Low-Rank Tensor Approximation in post Hartree-Fock MethodsBenedikt, Udo 21 January 2014 (has links)
In this thesis the application of novel tensor decomposition and tensor representation techniques in highly accurate post Hartree-Fock methods is evaluated. These representation techniques can help to overcome the steep scaling behaviour of high level ab-initio calculations with increasing system size and therefore break the "curse of dimensionality". After a comparison of various tensor formats the application of the "canonical polyadic" format (CP) is described in detail. There, especially the casting of a normal, index based tensor into the CP format (tensor decomposition) and a method for a low rank approximation (rank reduction) of the two-electron integrals in the AO basis are investigated. The decisive quantity for the applicability of the CP format is the scaling of the rank with increasing system and basis set size. The memory requirements and the computational effort for tensor manipulations in the CP format are only linear in the number of dimensions but still depend on the expansion length (rank) of the approximation. Furthermore, the AO-MO transformation and a MP2 algorithm with decomposed tensors in the CP format is evaluated and the scaling with increasing system and basis set size is investigated. Finally, a Coupled-Cluster algorithm based only on low-rank CP representation of the MO integrals is developed. There, especially the successive tensor contraction during the iterative solution of the amplitude equations and the error propagation upon multiple application of the reduction procedure are discussed. In conclusion the overall complexity of a Coupled-Cluster procedure with tensors in CP format is evaluated and some possibilities for improvements of the rank reduction procedure tailored to the needs in electronic structure calculations are shown. / Die vorliegende Arbeit beschäftigt sich mit der Anwendung neuartiger Tensorzerlegungs- und Tensorrepesentationstechniken in hochgenauen post Hartree-Fock Methoden um das hohe Skalierungsverhalten dieser Verfahren mit steigender Systemgröße zu verringern und somit den "Fluch der Dimensionen" zu brechen. Nach einer vergleichenden Betrachtung verschiedener Representationsformate wird auf die Anwendung des "canonical polyadic" Formates (CP) detailliert eingegangen. Dabei stehen zunächst die Umwandlung eines normalen, indexbasierten Tensors in das CP Format (Tensorzerlegung) und eine Methode der Niedrigrang Approximation (Rangreduktion) für Zweielektronenintegrale in der AO Basis im Vordergrund. Die entscheidende Größe für die Anwendbarkeit ist dabei das Skalierungsverhalten das Ranges mit steigender System- und Basissatzgröße, da der Speicheraufwand und die Berechnungskosten für Tensormanipulationen im CP Format zwar nur noch linear von der Anzahl der Dimensionen des Tensors abhängen, allerdings auch mit der Expansionslänge (Rang) skalieren. Im Anschluss wird die AO-MO Transformation und der MP2 Algorithmus mit zerlegten Tensoren im CP Format diskutiert und erneut das Skalierungsverhalten mit steigender System- und Basissatzgröße untersucht. Abschließend wird ein Coupled-Cluster Algorithmus vorgestellt, welcher ausschließlich mit Tensoren in einer Niedrigrang CP Darstellung arbeitet. Dabei wird vor allem auf die sukzessive Tensorkontraktion während der iterativen Bestimmung der Amplituden eingegangen und die Fehlerfortpanzung durch Anwendung des Rangreduktions-Algorithmus analysiert. Abschließend wird die Komplexität des gesamten Verfahrens bewertet und Verbesserungsmöglichkeiten der Reduktionsprozedur aufgezeigt.
|
5 |
Anwendung von Tensorapproximationen auf die Full Configuration Interaction MethodeBöhm, Karl-Heinz 19 August 2016 (has links)
In dieser Arbeit werden verschiedene Ansätze untersucht, um Tensorzerlegungsmethoden auf die Full-Configuration-Interaction-Methode (FCI) anzuwenden. Das Ziel dieser Ansätze ist es, zuverlässig konvergierende Algorithmen zu erstellen, welche es erlauben, die Wellenfunktion effizient im Canonical-Product-Tensorformat (CP) zu approximieren. Hierzu werden drei Ansätze vorgestellt, um die FCI-Wellenfunktion zu repräsentieren und darauf basierend die benötigten Koeffizienten zu bestimmen.
Der erste Ansatz beruht auf einer Entwicklung der Wellenfunktion als Linearkombination von Slaterdeterminanten, bei welcher in einer Hierarchie ausgehend von der Hartree-Fock-Slaterdeterminante sukzessive besetzte Orbitale durch virtuelle Orbitale ersetzt werden. Unter Nutzung von Tensorrepräsentationen im CP wird ein lineares Gleichungssystem gelöst, um die FCI-Koeffizienten zu bestimmen.
Im darauf folgenden Ansatz, welcher an Direct-CI angelehnt ist, werden Tensorrepräsentationen der Hamiltonmatrix und des Koeffizientenvektors aufgestellt, welche zur Lösung des FCI-Eigenwertproblems erforderlich sind. Hier wird ein Algorithmus vorgestellt, mit welchem das Eigenwertproblem im CP gelöst wird.
In einem weiteren Ansatz wird die Repräsentation der Hamiltonmatrix und des Koeffizientenvektors im Fockraum formuliert. Dieser Ansatz erlaubt die Lösung des FCI-Eigenwertproblems mit Hilfe verschiedener Algorithmen. Diese orientieren sich an den Rayleighquotienteniterationen oder dem Davidsonalgorithmus, wobei für den ersten Algorithmus eine zweite Version entwickelt wurde, wo die Rangreduktion teilweise durch Projektionen ersetzt wurde. Für den Davidsonalgorithmus ist ein breiteres Spektrum von Molekülen behandelbar und somit können erste Untersuchungen zur Skalierung und zu den zu erwartenden Fehlern vorgestellt werden.
Schließlich wird ein Ausblick auf mögliche Weiterentwicklungen gegeben, welche eine effizientere Berechnung ermöglichen und somit FCI im CP auch für größere Moleküle zugänglich macht. / In this thesis, various approaches are investigated to apply tensor decomposition methods to the Full Configuration Interaction method (FCI). The aim of these approaches is the development of algorithms, which converge reliably and which permit to approximate the wave function efficiently in the Canonical Product format (CP). Three approaches are introduced to represent the FCI wave function and to obtain the corresponding coefficients.
The first approach ist based on an expansion of the wave function as a linear combination of slater determinants. In this hierarchical expansion, starting from the Hartree Fock slater determinant, the occupied orbitals are substituted by virtual orbitals. Using tensor representations in the CP, a linear system of equations is solved to obtain the FCI coefficients.
In a further approach, tensor representations of the Hamiltonian matrix and the coefficient vectors are set up, which are required to solve the FCI eigenvalue problem. The tensor contractions and an algorithm to solve the eigenvalue problem in the CP are explained her in detail.
In the next approach, tensor representations of the Hamiltonian matrix and the coefficient vector are constructed in the Fock space. This approach allows the application of various algorithms. They are based on the Rayleight Quotient Algorithm and the Davidson algorithm and for the first one, there exists a second version, where the rank reduction algorithm is replaced by projections. The Davidson algorithm allows to treat a broader spectrum of molecules. First investigations regarding the scaling behaviour and the expectable errors can be shown for this approach. Finally, an outlook on the further development is given, that allows for more efficient calculations and makes FCI in the CP accessible for larger molecules.
|
Page generated in 0.0338 seconds