1 |
STRONG FIELD NONLINEAR OPTICS IN ATOMS AND POLYATOMIC MOLECULES: APPLICATION OF QUANTUM MECHANICAL METHODS TO PREDICT AND CONTROL LASER-INDUCED PROCESSESTarazkar, Maryam January 2015 (has links)
The central objective of this dissertation is developing new methods for calculating higher-order nonlinear optical responses of atoms, molecules, and ions, and discussing the relevant physical mechanisms that give rise to harmonic generation, Kerr effect, and higher-order Kerr effect. The applications of nonlinear optical properties in development of predictive models for femtosecond laser filamentation dynamics, photoemission spectroscopy, imaging, and design of new molecular systems have motivated the theoretical investigations in advancing methods for calculating nonlinear optical properties and finding the optimum conditions for controlling the nonlinearities. The time-dependent nonlinear refractive index coefficient 4 n is investigated for argon and generalized for all noble gas atoms helium, neon, krypton, and xenon in the wavelengths ranging from 250 nm to 2000 nm, using ab initio methods. The secondorder polynomial fitting of DC-Kerr, electric-field-induced second-harmonic generation (ESHG), and static second-order hyperpolarizability have been performed, using an auxiliary electric field approach to obtain the corresponding fourth-order optical properties. An expression on the basis of static, DC-Kerr, DFWM fourth-order hyperpolarizability is derived, which allows the calculations of the DSWM coefficients with considerably reduced error. The results of the calculations suggest that filament stabilization is most likely to be induced by the generation of free electrons. Applications of these calculations resolve the HOKE controversy and are important for the development of predictive models for femtosecond laser filamentation dynamics. In a series of proof-of-concept studies, the approach was employed for calculating dynamic linear and nonlinear hyperpolarizability of the radical cations. In this regard, the polarizability and second-order hyperpolarizability of nitrogen radical cation were investigated, using density functional theory (DFT) and multi-configurational self-consistent field (MCSCF) methods. The open-shell electronic system of nitrogen radical cation provides negative second-order optical nonlinearity, suggesting that the hyperpolarizability coefficient for nitrogen radical cation, in the non-resonant regime is mainly composed of combinations of virtual one-photon transitions rather than two-photon transitions. The calculations of second-order optical properties for nitrogen radical cation as a function of bond length have been investigated to study the effect of internuclear bond distance on optical process. The variation of nonlinear responses versus bond length shows the potential application in finding optimum conditions for higher values of nonlinear coefficients. Furthermore, the computation of dynamic second-order hyperpolarizabilities for multiply ionized noble gases have been studied in the wavelength ranging from 100 nm to the red of the first multi-photon resonance all the way toward the static regime, using the MCSCF method. The results indicate that the second-order hyperpolarizability coefficients decrease when the electrons are removed from the systems. As the atoms reach higher ionization states, the second-order hyperpolarizability responses as a function of wavelength, become less dispersive. The second-order hyperpolarizability coefficients for each ionized species have also been investigated in terms of quantum state symmetries; the results suggest that the sign of the optical responses for each ionized atom depends on the spin of the quantum states defined for the ionized species. The calculations are of value for predictive models of high-harmonic generation in multiply ionized plasma at X-ray photon energies. This research also focuses on investigating possible mechanisms for photodissociation of polyatomic molecules (acetophenone and the substituted derivatives) ionized through strong field infrared laser pulses. In this regard, quantum mechanical methods are combined with pump-probe spectroscopy to understand and control the dissociation dynamics in strong field regime. The applications of quantum mechanical models in interpreting time-resolved wavepacket dynamics and achieving coherent control has stimulated the interest to explore the PESs and investigate the role of conical intersections in wavepacket dynamics in strong field regime. The electronic ground and excited states for acetophenone radical cation and the substituted derivatives have been investigated to probe the resonance features observed in measurements at 1370 nm with laser intensity of 1013 W cm-2. The ten lowest lying ionic potential energy surfaces (PESs) of the acetophenone radical cation were explored, and the three-state conical intersection was mapped onto the PES, using MCSCF model to propose a photo-dissociation mechanism for acetophenone undergoing tunnel ionization and elucidate the potential dissociation pathways for formation of benzoyl fragment ion, as well as phenyl, acylium, and butadienyl small fragment ions. Similar calculations are presented for propiophenone radical cation which support the existence of a one-photon transition from the ground ionic to a bright dissociative D2 state, where motion of the acetyl group from a planar to nonplanar structure within the pulse duration enables the otherwise forbidden transition. The wavepacket dynamics in acetophenone molecular ion is modeled using the classical wavepacket trajectory calculations, to propose the mechanism wherein the 790 nm probe pulse excites a wavepacket on the ground surface D0 to the excited D2 surface at a delay of 325 fs. The innovations of this research are used to design control strategies for selective bond-breaking in acetophenone radical cation, as well as design control schemes for other molecules. / Chemistry
|
2 |
Anwendung von Tensorapproximationen auf die Full Configuration Interaction MethodeBöhm, Karl-Heinz 12 September 2016 (has links) (PDF)
In dieser Arbeit werden verschiedene Ansätze untersucht, um Tensorzerlegungsmethoden auf die Full-Configuration-Interaction-Methode (FCI) anzuwenden. Das Ziel dieser Ansätze ist es, zuverlässig konvergierende Algorithmen zu erstellen, welche es erlauben, die Wellenfunktion effizient im Canonical-Product-Tensorformat (CP) zu approximieren. Hierzu werden drei Ansätze vorgestellt, um die FCI-Wellenfunktion zu repräsentieren und darauf basierend die benötigten Koeffizienten zu bestimmen.
Der erste Ansatz beruht auf einer Entwicklung der Wellenfunktion als Linearkombination von Slaterdeterminanten, bei welcher in einer Hierarchie ausgehend von der Hartree-Fock-Slaterdeterminante sukzessive besetzte Orbitale durch virtuelle Orbitale ersetzt werden. Unter Nutzung von Tensorrepräsentationen im CP wird ein lineares Gleichungssystem gelöst, um die FCI-Koeffizienten zu bestimmen.
Im darauf folgenden Ansatz, welcher an Direct-CI angelehnt ist, werden Tensorrepräsentationen der Hamiltonmatrix und des Koeffizientenvektors aufgestellt, welche zur Lösung des FCI-Eigenwertproblems erforderlich sind. Hier wird ein Algorithmus vorgestellt, mit welchem das Eigenwertproblem im CP gelöst wird.
In einem weiteren Ansatz wird die Repräsentation der Hamiltonmatrix und des Koeffizientenvektors im Fockraum formuliert. Dieser Ansatz erlaubt die Lösung des FCI-Eigenwertproblems mit Hilfe verschiedener Algorithmen. Diese orientieren sich an den Rayleighquotienteniterationen oder dem Davidsonalgorithmus, wobei für den ersten Algorithmus eine zweite Version entwickelt wurde, wo die Rangreduktion teilweise durch Projektionen ersetzt wurde. Für den Davidsonalgorithmus ist ein breiteres Spektrum von Molekülen behandelbar und somit können erste Untersuchungen zur Skalierung und zu den zu erwartenden Fehlern vorgestellt werden.
Schließlich wird ein Ausblick auf mögliche Weiterentwicklungen gegeben, welche eine effizientere Berechnung ermöglichen und somit FCI im CP auch für größere Moleküle zugänglich macht. / In this thesis, various approaches are investigated to apply tensor decomposition methods to the Full Configuration Interaction method (FCI). The aim of these approaches is the development of algorithms, which converge reliably and which permit to approximate the wave function efficiently in the Canonical Product format (CP). Three approaches are introduced to represent the FCI wave function and to obtain the corresponding coefficients.
The first approach ist based on an expansion of the wave function as a linear combination of slater determinants. In this hierarchical expansion, starting from the Hartree Fock slater determinant, the occupied orbitals are substituted by virtual orbitals. Using tensor representations in the CP, a linear system of equations is solved to obtain the FCI coefficients.
In a further approach, tensor representations of the Hamiltonian matrix and the coefficient vectors are set up, which are required to solve the FCI eigenvalue problem. The tensor contractions and an algorithm to solve the eigenvalue problem in the CP are explained her in detail.
In the next approach, tensor representations of the Hamiltonian matrix and the coefficient vector are constructed in the Fock space. This approach allows the application of various algorithms. They are based on the Rayleight Quotient Algorithm and the Davidson algorithm and for the first one, there exists a second version, where the rank reduction algorithm is replaced by projections. The Davidson algorithm allows to treat a broader spectrum of molecules. First investigations regarding the scaling behaviour and the expectable errors can be shown for this approach. Finally, an outlook on the further development is given, that allows for more efficient calculations and makes FCI in the CP accessible for larger molecules.
|
3 |
Low-Rank Tensor Approximation in post Hartree-Fock MethodsBenedikt, Udo 24 February 2014 (has links) (PDF)
In this thesis the application of novel tensor decomposition and tensor representation techniques in highly accurate post Hartree-Fock methods is evaluated. These representation techniques can help to overcome the steep scaling behaviour of high level ab-initio calculations with increasing system size and therefore break the "curse of dimensionality". After a comparison of various tensor formats the application of the "canonical polyadic" format (CP) is described in detail. There, especially the casting of a normal, index based tensor into the CP format (tensor decomposition) and a method for a low rank approximation (rank reduction) of the two-electron integrals in the AO basis are investigated. The decisive quantity for the applicability of the CP format is the scaling of the rank with increasing system and basis set size. The memory requirements and the computational effort for tensor manipulations in the CP format are only linear in the number of dimensions but still depend on the expansion length (rank) of the approximation. Furthermore, the AO-MO transformation and a MP2 algorithm with decomposed tensors in the CP format is evaluated and the scaling with increasing system and basis set size is investigated. Finally, a Coupled-Cluster algorithm based only on low-rank CP representation of the MO integrals is developed. There, especially the successive tensor contraction during the iterative solution of the amplitude equations and the error propagation upon multiple application of the reduction procedure are discussed. In conclusion the overall complexity of a Coupled-Cluster procedure with tensors in CP format is evaluated and some possibilities for improvements of the rank reduction procedure tailored to the needs in electronic structure calculations are shown. / Die vorliegende Arbeit beschäftigt sich mit der Anwendung neuartiger Tensorzerlegungs- und Tensorrepesentationstechniken in hochgenauen post Hartree-Fock Methoden um das hohe Skalierungsverhalten dieser Verfahren mit steigender Systemgröße zu verringern und somit den "Fluch der Dimensionen" zu brechen. Nach einer vergleichenden Betrachtung verschiedener Representationsformate wird auf die Anwendung des "canonical polyadic" Formates (CP) detailliert eingegangen. Dabei stehen zunächst die Umwandlung eines normalen, indexbasierten Tensors in das CP Format (Tensorzerlegung) und eine Methode der Niedrigrang Approximation (Rangreduktion) für Zweielektronenintegrale in der AO Basis im Vordergrund. Die entscheidende Größe für die Anwendbarkeit ist dabei das Skalierungsverhalten das Ranges mit steigender System- und Basissatzgröße, da der Speicheraufwand und die Berechnungskosten für Tensormanipulationen im CP Format zwar nur noch linear von der Anzahl der Dimensionen des Tensors abhängen, allerdings auch mit der Expansionslänge (Rang) skalieren. Im Anschluss wird die AO-MO Transformation und der MP2 Algorithmus mit zerlegten Tensoren im CP Format diskutiert und erneut das Skalierungsverhalten mit steigender System- und Basissatzgröße untersucht. Abschließend wird ein Coupled-Cluster Algorithmus vorgestellt, welcher ausschließlich mit Tensoren in einer Niedrigrang CP Darstellung arbeitet. Dabei wird vor allem auf die sukzessive Tensorkontraktion während der iterativen Bestimmung der Amplituden eingegangen und die Fehlerfortpanzung durch Anwendung des Rangreduktions-Algorithmus analysiert. Abschließend wird die Komplexität des gesamten Verfahrens bewertet und Verbesserungsmöglichkeiten der Reduktionsprozedur aufgezeigt.
|
4 |
Computational study of antimalarial pyrazole alkaloids from newbouldia laevis in vacuo and in solutionBilonda, Kabuyi Mireille 03 November 2014 (has links)
MSc (Chemistry) / Department of Chemistry
|
5 |
A COMPUTATIONAL INVESTIGATION OF SECTORAL ZONING OF RARE EARTH ELEMENTS (REE) IN FLUORITEMonir, Md M. 10 August 2015 (has links)
No description available.
|
6 |
Low-Rank Tensor Approximation in post Hartree-Fock MethodsBenedikt, Udo 21 January 2014 (has links)
In this thesis the application of novel tensor decomposition and tensor representation techniques in highly accurate post Hartree-Fock methods is evaluated. These representation techniques can help to overcome the steep scaling behaviour of high level ab-initio calculations with increasing system size and therefore break the "curse of dimensionality". After a comparison of various tensor formats the application of the "canonical polyadic" format (CP) is described in detail. There, especially the casting of a normal, index based tensor into the CP format (tensor decomposition) and a method for a low rank approximation (rank reduction) of the two-electron integrals in the AO basis are investigated. The decisive quantity for the applicability of the CP format is the scaling of the rank with increasing system and basis set size. The memory requirements and the computational effort for tensor manipulations in the CP format are only linear in the number of dimensions but still depend on the expansion length (rank) of the approximation. Furthermore, the AO-MO transformation and a MP2 algorithm with decomposed tensors in the CP format is evaluated and the scaling with increasing system and basis set size is investigated. Finally, a Coupled-Cluster algorithm based only on low-rank CP representation of the MO integrals is developed. There, especially the successive tensor contraction during the iterative solution of the amplitude equations and the error propagation upon multiple application of the reduction procedure are discussed. In conclusion the overall complexity of a Coupled-Cluster procedure with tensors in CP format is evaluated and some possibilities for improvements of the rank reduction procedure tailored to the needs in electronic structure calculations are shown. / Die vorliegende Arbeit beschäftigt sich mit der Anwendung neuartiger Tensorzerlegungs- und Tensorrepesentationstechniken in hochgenauen post Hartree-Fock Methoden um das hohe Skalierungsverhalten dieser Verfahren mit steigender Systemgröße zu verringern und somit den "Fluch der Dimensionen" zu brechen. Nach einer vergleichenden Betrachtung verschiedener Representationsformate wird auf die Anwendung des "canonical polyadic" Formates (CP) detailliert eingegangen. Dabei stehen zunächst die Umwandlung eines normalen, indexbasierten Tensors in das CP Format (Tensorzerlegung) und eine Methode der Niedrigrang Approximation (Rangreduktion) für Zweielektronenintegrale in der AO Basis im Vordergrund. Die entscheidende Größe für die Anwendbarkeit ist dabei das Skalierungsverhalten das Ranges mit steigender System- und Basissatzgröße, da der Speicheraufwand und die Berechnungskosten für Tensormanipulationen im CP Format zwar nur noch linear von der Anzahl der Dimensionen des Tensors abhängen, allerdings auch mit der Expansionslänge (Rang) skalieren. Im Anschluss wird die AO-MO Transformation und der MP2 Algorithmus mit zerlegten Tensoren im CP Format diskutiert und erneut das Skalierungsverhalten mit steigender System- und Basissatzgröße untersucht. Abschließend wird ein Coupled-Cluster Algorithmus vorgestellt, welcher ausschließlich mit Tensoren in einer Niedrigrang CP Darstellung arbeitet. Dabei wird vor allem auf die sukzessive Tensorkontraktion während der iterativen Bestimmung der Amplituden eingegangen und die Fehlerfortpanzung durch Anwendung des Rangreduktions-Algorithmus analysiert. Abschließend wird die Komplexität des gesamten Verfahrens bewertet und Verbesserungsmöglichkeiten der Reduktionsprozedur aufgezeigt.
|
7 |
Anwendung von Tensorapproximationen auf die Full Configuration Interaction MethodeBöhm, Karl-Heinz 19 August 2016 (has links)
In dieser Arbeit werden verschiedene Ansätze untersucht, um Tensorzerlegungsmethoden auf die Full-Configuration-Interaction-Methode (FCI) anzuwenden. Das Ziel dieser Ansätze ist es, zuverlässig konvergierende Algorithmen zu erstellen, welche es erlauben, die Wellenfunktion effizient im Canonical-Product-Tensorformat (CP) zu approximieren. Hierzu werden drei Ansätze vorgestellt, um die FCI-Wellenfunktion zu repräsentieren und darauf basierend die benötigten Koeffizienten zu bestimmen.
Der erste Ansatz beruht auf einer Entwicklung der Wellenfunktion als Linearkombination von Slaterdeterminanten, bei welcher in einer Hierarchie ausgehend von der Hartree-Fock-Slaterdeterminante sukzessive besetzte Orbitale durch virtuelle Orbitale ersetzt werden. Unter Nutzung von Tensorrepräsentationen im CP wird ein lineares Gleichungssystem gelöst, um die FCI-Koeffizienten zu bestimmen.
Im darauf folgenden Ansatz, welcher an Direct-CI angelehnt ist, werden Tensorrepräsentationen der Hamiltonmatrix und des Koeffizientenvektors aufgestellt, welche zur Lösung des FCI-Eigenwertproblems erforderlich sind. Hier wird ein Algorithmus vorgestellt, mit welchem das Eigenwertproblem im CP gelöst wird.
In einem weiteren Ansatz wird die Repräsentation der Hamiltonmatrix und des Koeffizientenvektors im Fockraum formuliert. Dieser Ansatz erlaubt die Lösung des FCI-Eigenwertproblems mit Hilfe verschiedener Algorithmen. Diese orientieren sich an den Rayleighquotienteniterationen oder dem Davidsonalgorithmus, wobei für den ersten Algorithmus eine zweite Version entwickelt wurde, wo die Rangreduktion teilweise durch Projektionen ersetzt wurde. Für den Davidsonalgorithmus ist ein breiteres Spektrum von Molekülen behandelbar und somit können erste Untersuchungen zur Skalierung und zu den zu erwartenden Fehlern vorgestellt werden.
Schließlich wird ein Ausblick auf mögliche Weiterentwicklungen gegeben, welche eine effizientere Berechnung ermöglichen und somit FCI im CP auch für größere Moleküle zugänglich macht. / In this thesis, various approaches are investigated to apply tensor decomposition methods to the Full Configuration Interaction method (FCI). The aim of these approaches is the development of algorithms, which converge reliably and which permit to approximate the wave function efficiently in the Canonical Product format (CP). Three approaches are introduced to represent the FCI wave function and to obtain the corresponding coefficients.
The first approach ist based on an expansion of the wave function as a linear combination of slater determinants. In this hierarchical expansion, starting from the Hartree Fock slater determinant, the occupied orbitals are substituted by virtual orbitals. Using tensor representations in the CP, a linear system of equations is solved to obtain the FCI coefficients.
In a further approach, tensor representations of the Hamiltonian matrix and the coefficient vectors are set up, which are required to solve the FCI eigenvalue problem. The tensor contractions and an algorithm to solve the eigenvalue problem in the CP are explained her in detail.
In the next approach, tensor representations of the Hamiltonian matrix and the coefficient vector are constructed in the Fock space. This approach allows the application of various algorithms. They are based on the Rayleight Quotient Algorithm and the Davidson algorithm and for the first one, there exists a second version, where the rank reduction algorithm is replaced by projections. The Davidson algorithm allows to treat a broader spectrum of molecules. First investigations regarding the scaling behaviour and the expectable errors can be shown for this approach. Finally, an outlook on the further development is given, that allows for more efficient calculations and makes FCI in the CP accessible for larger molecules.
|
Page generated in 0.111 seconds