Spelling suggestions: "subject:"deoria espectral dde digrafos"" "subject:"deoria espectral dde cografos""
1 |
Um estudo comparativo de segmentação de imagens por aplicações do corte normalizado em grafos / A comparative study of image segmentation by application of normalized cut on graphsFerreira, Anselmo Castelo Branco 17 August 2018 (has links)
Orientador: Marco Antonio Garcia de Carvalho / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia / Made available in DSpace on 2018-08-17T11:47:27Z (GMT). No. of bitstreams: 1
Ferreira_AnselmoCasteloBranco_M.pdf: 7338510 bytes, checksum: 593cb683d0380e0c894f0147a4129c77 (MD5)
Previous issue date: 2011 / Resumo: O particionamento de grafos tem sido amplamente utilizado como meio de segmentação de imagens. Uma das formas de particionar grafos é por meio de uma técnica conhecida como Corte Normalizado, que analisa os autovetores da matriz laplaciana de um grafo e utiliza alguns deles para o corte. Essa dissertação propõe o uso de Corte Normalizado em grafos originados das modelagens por Quadtree e Árvore dos Componentes a fim de realizar segmentação de imagens. Experimentos de segmentação de imagens por Corte Normalizado nestas modelagens são realizados e um benchmark específico compara e classifica os resultados obtidos por outras técnicas propostas na literatura específica. Os resultados obtidos são promissores e nos permitem concluir que o uso de outras modelagens de imagens por grafos no Corte Normalizado pode gerar melhores segmentações. Uma das modelagens pode inclusive trazer outro benefício que é gerar um grafo representativo da imagem com um número menor de nós do que representações mais tradicionais / Abstract: The graph partitioning has been widely used as a mean of image segmentation. One way to partition graphs is through a technique known as Normalized Cut, which analyzes the graph's Laplacian matrix eigenvectors and uses some of them for the cut. This work proposes the use of Normalized Cut in graphs generated by structures based on Quadtree and Component Tree to perform image segmentation. Experiments of image segmentation by Normalized Cut in these models are made and a specific benchmark compares and ranks the results obtained by other techniques proposed in the literature. The results are promising and allow us to conclude that the use of other image graph models in the Normalized Cut can generate better segmentations. One of the structures can also bring another benefit that is generating an image representative graph with fewer graph nodes than the traditional representations / Mestrado / Tecnologia e Inovação / Mestre em Tecnologia
|
2 |
A soma dos maiores autovalores da matriz laplaciana sem sinal em famílias de grafos / The sum of the largest eigenvalues of singless Laplacian matrix on graphs familiesAmaro, Bruno Dias, 1984- 12 May 2014 (has links)
Orientadores: Carlile Campos Lavor, Leonardo Silva de Lima / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T08:31:47Z (GMT). No. of bitstreams: 1
Amaro_BrunoDias_D.pdf: 1369520 bytes, checksum: a36663d5fd23193d66bb22c83cb932aa (MD5)
Previous issue date: 2014 / Resumo: A Teoria Espectral de Grafos é um ramo da Matemática Discreta que se preocupa com a relação entre as propriedades algébricas do espectro de certas matrizes associadas a grafos, como a matriz de adjacência, laplaciana ou laplaciana sem sinal e a topologia dos mesmos. Os autovalores e autovetores das matrizes associadas a um grafo são os invariantes que formam o autoespaço de grafos. Em Teoria Espectral de Grafos a conjectura proposta por Brouwer e Haemers, que associa a soma dos k maiores autovalores da matriz Laplaciana de um grafo G com seu número de arestas mais um fator combinatório (que depende do valor k adotado) é uma das questões interessantes e que está em aberto na literatura. Essa mostra diversos trabalhos que tentam provar tal conjectura. Em 2013, Ashraf et al. estenderam essa conjectura para a matriz laplaciana sem sinal e provaram que ela é válida para a soma dos 2 maiores autovalores e que também é válida para todo k, caso o grafo seja regular. Nosso trabalho aborda a versão dessa conjectura para a matriz laplaciana sem sinal. Conseguimos obter uma família de grafos que satisfaz a conjectura para a soma dos 3 maiores autovalores da matriz laplaciana sem sinal e a família de grafos split completo mais uma aresta satisfaz a conjectura para todos os autovalores. Ainda, baseado na desigualdade de Schur, conseguimos mostrar que a soma dos k menores autovalores das matrizes laplaciana e laplaciana sem sinal são limitadas superiormente pela soma dos k menores graus de G / Abstract: The Spectral Graph Theory is a branch of Discrete Mathematics that is concerned with relations between the algebraic properties of spectrum of some matrices associated to graphs, as the Adjacency, Laplacian and signless Laplacian matrices and their respective topologies. The eigenvalues and eigenvectors of matrices associated to graphs are the invariants which constitute the eigenspace of graphs. On Spectral Graph Theory the conjecture proposed by Brouwer and Haemers, associating the sum of k largest eigenvalues of Laplacian matrix of a graph G with its edges numbers plus a combinatorial factor (which depends on the choosed k) is an open interesting question in the Literature. There are several works that attempt to prove this conjecture. In 2013, Ashraf et al. stretch the conjecture out to signless Laplacian matrix and proved that it is true for the sum of the 2 largest eigenvalues of signless Laplacian matrix and it is also true for all k if G is a regular graph. Our work approaches on the version of the conjecture concerning to signless Laplacian matrix. We could obtain a family of graphs which satisfies the conjecture for the sum of the 3 largest eigenvalues of signless Laplacian matrix and we prove that the family of complete split graphs plus one edge satisfies the Conjecture for all eigenvalues. Moreover, based on Schur's inequality, we could show that the sum of the k smallest eigenvalues of Laplacian and signless Laplacian matrices are bounded by the sum of the k smallest degrees of G / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
3 |
Graph Laplacian for spectral clustering and seeded image segmentation / Estudo do Laplaciano do grafo para o problema de clusterização espectral e segmentação interativa de imagensCasaca, Wallace Correa de Oliveira 05 December 2014 (has links)
Image segmentation is an essential tool to enhance the ability of computer systems to efficiently perform elementary cognitive tasks such as detection, recognition and tracking. In this thesis we concentrate on the investigation of two fundamental topics in the context of image segmentation: spectral clustering and seeded image segmentation. We introduce two new algorithms for those topics that, in summary, rely on Laplacian-based operators, spectral graph theory, and minimization of energy functionals. The effectiveness of both segmentation algorithms is verified by visually evaluating the resulting partitions against state-of-the-art methods as well as through a variety of quantitative measures typically employed as benchmark by the image segmentation community. Our spectral-based segmentation algorithm combines image decomposition, similarity metrics, and spectral graph theory into a concise and powerful framework. An image decomposition is performed to split the input image into texture and cartoon components. Then, an affinity graph is generated and weights are assigned to the edges of the graph according to a gradient-based inner-product function. From the eigenstructure of the affinity graph, the image is partitioned through the spectral cut of the underlying graph. Moreover, the image partitioning can be improved by changing the graph weights by sketching interactively. Visual and numerical evaluation were conducted against representative spectral-based segmentation techniques using boundary and partition quality measures in the well-known BSDS dataset. Unlike most existing seed-based methods that rely on complex mathematical formulations that typically do not guarantee unique solution for the segmentation problem while still being prone to be trapped in local minima, our segmentation approach is mathematically simple to formulate, easy-to-implement, and it guarantees to produce a unique solution. Moreover, the formulation holds an anisotropic behavior, that is, pixels sharing similar attributes are preserved closer to each other while big discontinuities are naturally imposed on the boundary between image regions, thus ensuring better fitting on object boundaries. We show that the proposed approach significantly outperforms competing techniques both quantitatively as well as qualitatively, using the classical GrabCut dataset from Microsoft as a benchmark. While most of this research concentrates on the particular problem of segmenting an image, we also develop two new techniques to address the problem of image inpainting and photo colorization. Both methods couple the developed segmentation tools with other computer vision approaches in order to operate properly. / Segmentar uma image é visto nos dias de hoje como uma prerrogativa para melhorar a capacidade de sistemas de computador para realizar tarefas complexas de natureza cognitiva tais como detecção de objetos, reconhecimento de padrões e monitoramento de alvos. Esta pesquisa de doutorado visa estudar dois temas de fundamental importância no contexto de segmentação de imagens: clusterização espectral e segmentação interativa de imagens. Foram propostos dois novos algoritmos de segmentação dentro das linhas supracitadas, os quais se baseiam em operadores do Laplaciano, teoria espectral de grafos e na minimização de funcionais de energia. A eficácia de ambos os algoritmos pode ser constatada através de avaliações visuais das segmentações originadas, como também através de medidas quantitativas computadas com base nos resultados obtidos por técnicas do estado-da-arte em segmentação de imagens. Nosso primeiro algoritmo de segmentação, o qual ´e baseado na teoria espectral de grafos, combina técnicas de decomposição de imagens e medidas de similaridade em grafos em uma única e robusta ferramenta computacional. Primeiramente, um método de decomposição de imagens é aplicado para dividir a imagem alvo em duas componentes: textura e cartoon. Em seguida, um grafo de afinidade é gerado e pesos são atribuídos às suas arestas de acordo com uma função escalar proveniente de um operador de produto interno. Com base no grafo de afinidade, a imagem é então subdividida por meio do processo de corte espectral. Além disso, o resultado da segmentação pode ser refinado de forma interativa, mudando-se, desta forma, os pesos do grafo base. Experimentos visuais e numéricos foram conduzidos tomando-se por base métodos representativos do estado-da-arte e a clássica base de dados BSDS a fim de averiguar a eficiência da metodologia proposta. Ao contrário de grande parte dos métodos existentes de segmentação interativa, os quais são modelados por formulações matemáticas complexas que normalmente não garantem solução única para o problema de segmentação, nossa segunda metodologia aqui proposta é matematicamente simples de ser interpretada, fácil de implementar e ainda garante unicidade de solução. Além disso, o método proposto possui um comportamento anisotrópico, ou seja, pixels semelhantes são preservados mais próximos uns dos outros enquanto descontinuidades bruscas são impostas entre regiões da imagem onde as bordas são mais salientes. Como no caso anterior, foram realizadas diversas avaliações qualitativas e quantitativas envolvendo nossa técnica e métodos do estado-da-arte, tomando-se como referência a base de dados GrabCut da Microsoft. Enquanto a maior parte desta pesquisa de doutorado concentra-se no problema específico de segmentar imagens, como conteúdo complementar de pesquisa foram propostas duas novas técnicas para tratar o problema de retoque digital e colorização de imagens.
|
4 |
Estudo do espectro Laplaciano na categorização de imagens / Study of the Laplacian spectrum in the categorization of images.Humari, Juan Herbert Chuctaya 02 May 2016 (has links)
Uma imagem engloba informação que precisa ser organizada para interpretar e compreender seu conteúdo. Existem diversas técnicas computacionais para extrair a principal informação de uma imagem e podem ser divididas em três áreas: análise de cor, textura e forma. Uma das principais delas é a análise de forma, por descrever características de objetos baseadas em seus pontos fronteira. Propomos um método de caracterização de imagens, por meio da análise de forma, baseada nas propriedades espectrais do laplaciano em grafos. O procedimento construiu grafos G baseados nos pontos fronteira do objeto, cujas conexões entre vértices são determinadas por limiares T_l. A partir dos grafos obtêm-se a matriz de adjacência A e a matriz de graus D, as quais definem a matriz Laplaciana L=D -A. A decomposição espectral da matriz Laplaciana (autovalores) é investigada para descrever características das imagens. Duas abordagens são consideradas: a) Análise do vetor característico baseado em limiares e a histogramas, considera dois parâmetros o intervalo de classes IC_l e o limiar T_l; b) Análise do vetor característico baseado em vários limiares para autovalores fixos; os quais representam o segundo e último autovalor da matriz L. As técnicas foram testada em três coleções de imagens: sintéticas (Genéricas), parasitas intestinais (SADPI) e folhas de plantas (CNShape), cada uma destas com suas próprias características e desafios. Na avaliação dos resultados, empregamos o modelo de classificação support vector machine (SVM), o qual avalia nossas abordagens, determinando o índice de separação das categorias. A primeira abordagem obteve um acerto de 90 % com a coleção de imagens Genéricas, 88 % na coleção SADPI, e 72 % na coleção CNShape. Na segunda abordagem, obtém-se uma taxa de acerto de 97 % com a coleção de imagens Genéricas; 83 % para SADPI e 86 % no CNShape. Os resultados mostram que a classificação de imagens a partir do espectro do Laplaciano, consegue categorizá-las satisfatoriamente. / An image includes information that needs to be organized to interpret and understand its contents. There are several computational techniques to extract the main information of images and are divided into three areas: color, texture and shape analysis. One of the main of them is shape analysis, since it describes objects getting main features based on reference points, usually border points. This dissertation proposes a shape analysis method based on the spectral properties of the Laplacian in graphs to represent images. The procedure builds G graphs based on object border points, whose connections between vertices are determined by thresholds T_l. From graphs G we obtain the adjacency matrix A and matrix degrees D, which define the Laplacian matrix L=D -A. Thus, spectral decomposition of the Laplacian matrix (eigenvalues) is investigated to describe image features. Two approaches are considered: a)Analysis of feature vector based on thresholds and histograms, it considers two parameters, classes range IC_l and threshold T_l; b) Analysis of feature vector based on multiple linear for fixed eigenvalues, which represents the second and final eigenvalue matrix L. The techniques were tested in three image datasets: synthetic (Generic), human intestinal parasites (SADPI) and plant leaves (CNShape), each of these with its own features and challenges. Afterwards to evaluate our results, we used the classification model Support Vector Machine (SVM) to evaluate our approaches, determining the percentage of separation of categories. The first approach achieved 90 % of precision with the Generic image dataset, 88 % in SADPI dataset, and 72 % in CNShape dataset. In the second approach, it obtains 97 % of precision with the Generic image dataset, 83 % for SADPI and 86 % in CNShape respectively. The results show that the classification of images from the Laplacian spectrum can categorize them satisfactorily.
|
5 |
Estudo do espectro Laplaciano na categorização de imagens / Study of the Laplacian spectrum in the categorization of images.Juan Herbert Chuctaya Humari 02 May 2016 (has links)
Uma imagem engloba informação que precisa ser organizada para interpretar e compreender seu conteúdo. Existem diversas técnicas computacionais para extrair a principal informação de uma imagem e podem ser divididas em três áreas: análise de cor, textura e forma. Uma das principais delas é a análise de forma, por descrever características de objetos baseadas em seus pontos fronteira. Propomos um método de caracterização de imagens, por meio da análise de forma, baseada nas propriedades espectrais do laplaciano em grafos. O procedimento construiu grafos G baseados nos pontos fronteira do objeto, cujas conexões entre vértices são determinadas por limiares T_l. A partir dos grafos obtêm-se a matriz de adjacência A e a matriz de graus D, as quais definem a matriz Laplaciana L=D -A. A decomposição espectral da matriz Laplaciana (autovalores) é investigada para descrever características das imagens. Duas abordagens são consideradas: a) Análise do vetor característico baseado em limiares e a histogramas, considera dois parâmetros o intervalo de classes IC_l e o limiar T_l; b) Análise do vetor característico baseado em vários limiares para autovalores fixos; os quais representam o segundo e último autovalor da matriz L. As técnicas foram testada em três coleções de imagens: sintéticas (Genéricas), parasitas intestinais (SADPI) e folhas de plantas (CNShape), cada uma destas com suas próprias características e desafios. Na avaliação dos resultados, empregamos o modelo de classificação support vector machine (SVM), o qual avalia nossas abordagens, determinando o índice de separação das categorias. A primeira abordagem obteve um acerto de 90 % com a coleção de imagens Genéricas, 88 % na coleção SADPI, e 72 % na coleção CNShape. Na segunda abordagem, obtém-se uma taxa de acerto de 97 % com a coleção de imagens Genéricas; 83 % para SADPI e 86 % no CNShape. Os resultados mostram que a classificação de imagens a partir do espectro do Laplaciano, consegue categorizá-las satisfatoriamente. / An image includes information that needs to be organized to interpret and understand its contents. There are several computational techniques to extract the main information of images and are divided into three areas: color, texture and shape analysis. One of the main of them is shape analysis, since it describes objects getting main features based on reference points, usually border points. This dissertation proposes a shape analysis method based on the spectral properties of the Laplacian in graphs to represent images. The procedure builds G graphs based on object border points, whose connections between vertices are determined by thresholds T_l. From graphs G we obtain the adjacency matrix A and matrix degrees D, which define the Laplacian matrix L=D -A. Thus, spectral decomposition of the Laplacian matrix (eigenvalues) is investigated to describe image features. Two approaches are considered: a)Analysis of feature vector based on thresholds and histograms, it considers two parameters, classes range IC_l and threshold T_l; b) Analysis of feature vector based on multiple linear for fixed eigenvalues, which represents the second and final eigenvalue matrix L. The techniques were tested in three image datasets: synthetic (Generic), human intestinal parasites (SADPI) and plant leaves (CNShape), each of these with its own features and challenges. Afterwards to evaluate our results, we used the classification model Support Vector Machine (SVM) to evaluate our approaches, determining the percentage of separation of categories. The first approach achieved 90 % of precision with the Generic image dataset, 88 % in SADPI dataset, and 72 % in CNShape dataset. In the second approach, it obtains 97 % of precision with the Generic image dataset, 83 % for SADPI and 86 % in CNShape respectively. The results show that the classification of images from the Laplacian spectrum can categorize them satisfactorily.
|
6 |
Graph Laplacian for spectral clustering and seeded image segmentation / Estudo do Laplaciano do grafo para o problema de clusterização espectral e segmentação interativa de imagensWallace Correa de Oliveira Casaca 05 December 2014 (has links)
Image segmentation is an essential tool to enhance the ability of computer systems to efficiently perform elementary cognitive tasks such as detection, recognition and tracking. In this thesis we concentrate on the investigation of two fundamental topics in the context of image segmentation: spectral clustering and seeded image segmentation. We introduce two new algorithms for those topics that, in summary, rely on Laplacian-based operators, spectral graph theory, and minimization of energy functionals. The effectiveness of both segmentation algorithms is verified by visually evaluating the resulting partitions against state-of-the-art methods as well as through a variety of quantitative measures typically employed as benchmark by the image segmentation community. Our spectral-based segmentation algorithm combines image decomposition, similarity metrics, and spectral graph theory into a concise and powerful framework. An image decomposition is performed to split the input image into texture and cartoon components. Then, an affinity graph is generated and weights are assigned to the edges of the graph according to a gradient-based inner-product function. From the eigenstructure of the affinity graph, the image is partitioned through the spectral cut of the underlying graph. Moreover, the image partitioning can be improved by changing the graph weights by sketching interactively. Visual and numerical evaluation were conducted against representative spectral-based segmentation techniques using boundary and partition quality measures in the well-known BSDS dataset. Unlike most existing seed-based methods that rely on complex mathematical formulations that typically do not guarantee unique solution for the segmentation problem while still being prone to be trapped in local minima, our segmentation approach is mathematically simple to formulate, easy-to-implement, and it guarantees to produce a unique solution. Moreover, the formulation holds an anisotropic behavior, that is, pixels sharing similar attributes are preserved closer to each other while big discontinuities are naturally imposed on the boundary between image regions, thus ensuring better fitting on object boundaries. We show that the proposed approach significantly outperforms competing techniques both quantitatively as well as qualitatively, using the classical GrabCut dataset from Microsoft as a benchmark. While most of this research concentrates on the particular problem of segmenting an image, we also develop two new techniques to address the problem of image inpainting and photo colorization. Both methods couple the developed segmentation tools with other computer vision approaches in order to operate properly. / Segmentar uma image é visto nos dias de hoje como uma prerrogativa para melhorar a capacidade de sistemas de computador para realizar tarefas complexas de natureza cognitiva tais como detecção de objetos, reconhecimento de padrões e monitoramento de alvos. Esta pesquisa de doutorado visa estudar dois temas de fundamental importância no contexto de segmentação de imagens: clusterização espectral e segmentação interativa de imagens. Foram propostos dois novos algoritmos de segmentação dentro das linhas supracitadas, os quais se baseiam em operadores do Laplaciano, teoria espectral de grafos e na minimização de funcionais de energia. A eficácia de ambos os algoritmos pode ser constatada através de avaliações visuais das segmentações originadas, como também através de medidas quantitativas computadas com base nos resultados obtidos por técnicas do estado-da-arte em segmentação de imagens. Nosso primeiro algoritmo de segmentação, o qual ´e baseado na teoria espectral de grafos, combina técnicas de decomposição de imagens e medidas de similaridade em grafos em uma única e robusta ferramenta computacional. Primeiramente, um método de decomposição de imagens é aplicado para dividir a imagem alvo em duas componentes: textura e cartoon. Em seguida, um grafo de afinidade é gerado e pesos são atribuídos às suas arestas de acordo com uma função escalar proveniente de um operador de produto interno. Com base no grafo de afinidade, a imagem é então subdividida por meio do processo de corte espectral. Além disso, o resultado da segmentação pode ser refinado de forma interativa, mudando-se, desta forma, os pesos do grafo base. Experimentos visuais e numéricos foram conduzidos tomando-se por base métodos representativos do estado-da-arte e a clássica base de dados BSDS a fim de averiguar a eficiência da metodologia proposta. Ao contrário de grande parte dos métodos existentes de segmentação interativa, os quais são modelados por formulações matemáticas complexas que normalmente não garantem solução única para o problema de segmentação, nossa segunda metodologia aqui proposta é matematicamente simples de ser interpretada, fácil de implementar e ainda garante unicidade de solução. Além disso, o método proposto possui um comportamento anisotrópico, ou seja, pixels semelhantes são preservados mais próximos uns dos outros enquanto descontinuidades bruscas são impostas entre regiões da imagem onde as bordas são mais salientes. Como no caso anterior, foram realizadas diversas avaliações qualitativas e quantitativas envolvendo nossa técnica e métodos do estado-da-arte, tomando-se como referência a base de dados GrabCut da Microsoft. Enquanto a maior parte desta pesquisa de doutorado concentra-se no problema específico de segmentar imagens, como conteúdo complementar de pesquisa foram propostas duas novas técnicas para tratar o problema de retoque digital e colorização de imagens.
|
7 |
Teoria Espectral de Grafos aplicada ao problema de Isomorfismo de GrafosSantos, Philippe Leal Freire dos 23 August 2010 (has links)
Made available in DSpace on 2016-12-23T14:33:41Z (GMT). No. of bitstreams: 1
Dissertacao de Philippe Leal Freire dos Santos.pdf: 1222437 bytes, checksum: 0b5ab3d6e8b9f4b4640e53168b2d042d (MD5)
Previous issue date: 2010-08-23 / In this work we investigated the use of concepts from Spectral Graph Theory (SGT) to support the construction of algorithms that solve the Graph Isomorphism Problem (GIP). Three theoretical results which consider information from the spectrum of the graphs and from the eigenvector centralities were presented. Furthermore, an algorithm for detection of graph isomorphism based on two of these results was proposed. Finally, we present the computational results comparing this algorithm with others from literature. / Neste trabalho investigamos a utilização de conceitos da Teoria Espectral de Grafos (TEG) a fim de auxiliar a construção de algoritmos que solucionem o Problema de Isomorfismo de Grafos (PIG). Três resultados teóricos que consideram informações do espectro e das centralidades de autovetor dos vértices dos grafos foram apresentados. Além disso, foi proposto um algoritmo para detecção de isomorfismo de grafos baseado em dois destes resultados. Por fim, apresentamos os resultados computacionais da comparação deste algoritmo com outros da literatura
|
8 |
[pt] DUAS ABORDAGENS EM DESVIOS MODERADOS PARA CONTAGEM DE TRIÂNGULOS EM GRAFOS G(N, M) / [en] TWO APPROACHES TO MODERATE DEVIATIONS IN TRIANGLE COUNT IN G(N, M) GRAPHSGABRIEL DIAS DO COUTO 04 August 2022 (has links)
[pt] O estudo de desvios, e em particular grandes desvios, tem uma história
longa na teoria de probabilidade. Nas últimas décadas muitos artigos consideraram essas questões no contexto de subgrafos de grafos aleatórios G(n, p) e
G(n, m). Esta dissertação considera a cauda inferior para o número de triângulos no grafo aleatório G(n, m). Duas abordagens estão consideradas: Martingales, a partir artigo de Christina Goldschmidt, Simon Griffiths e Alex Scott; e
Teoria Espectral de Grafos, a partir do artigo de Joe Neeman, Charles Radin e
Lorenzo Sadun. Essas duas abordagens conseguem encontrar o comportamento
da cauda em dois regimes diferentes. Na dissertação discutiremos a visão geral
do artigo de Goldschmidt, Griffiths e Scott, e discutiremos em detalhes o artigo de Neeman, Radin e Sadun. Em particular, exploraremos a conexão entre
a cauda inferior do número de triângulos e o comportamento dos autovalores mais negativos da matriz de adjacência. Veremos que a contagem tende a
depender, essencialmente, do autovalor mais negativo. / [en] The study of deviations, and in particular large deviations, has a long
history in Probability Theory. In recent decades many articles have considered
these questions in the context of subgraphs of the random graphs G(n, p) and
G(n, m). This dissertation considers the lower tail for the number of triangles in
the random graph G(n, m). Two approaches are considered: Martingales, based
on the article of Christina Goldschmidt, Simon Griffiths and Alex Scott; and
Spectral Graph Theory, based on the article of Joe Neeman, Charles Radin and
Lorenzo Sadun. These two approaches manage to find the behavior of the tail
in two different regimes. In this dissertation we give an overview of the article of
Goldschmidt, Griffiths and Scott, discuss in detail the article of artigo Neeman,
Radin and Sadun. In particular, we shall explore the connection between the
lower tail of the number of triangles and the behavior of the most negative
eigenvalues of the adjacency matrix. We shall see that the triangle count tends
to especially depend on the most negative eigenvalue.
|
Page generated in 0.0861 seconds