• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O teorema do gancho e aplicações. / The hook theorem and applications.

ROCHA, Josefa Itailma da. 02 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-02T20:44:35Z No. of bitstreams: 1 JOSEFA ITAILMA DA ROCHA - DISSERTAÇÃO PPGMAT 2011..pdf: 536621 bytes, checksum: 06e799bb53766cc5565089a6028e876f (MD5) / Made available in DSpace on 2018-08-02T20:44:35Z (GMT). No. of bitstreams: 1 JOSEFA ITAILMA DA ROCHA - DISSERTAÇÃO PPGMAT 2011..pdf: 536621 bytes, checksum: 06e799bb53766cc5565089a6028e876f (MD5) Previous issue date: 2011-12 / Capes / Neste trabalho usamos a Teoria de Young para representações dos grupos simétricos no estudo de PI-álgebras. Amitai Regev (1972) introduziu os conceitos de codimensão e cocaracter de uma PI-álgebra, os quais foram as principais ferramentas desse estudo. Apresentamos inicialmente o Teorema do Gancho, que foi demonstrado por Amitsur e Regev em 1982. Esse teorema refere-se ao comportamento da sequência de cocaracteres de uma PI-álgebra, dando condições para que um caracter irredutível do grupo Sn apare¸ca com multiplicidade n˜ao nula na decomposição do n-ésimo cocaracteres dessa PI-álgebra. Apresentamos também três aplicações desse teorema, entre elas o Teorema de Amitsur, que garante que toda PI-álgebra satisfaz uma potência de algum polinˆomio standard. Por fim, estudamos resultados de Amitsur e Regev de 1982 sobre um tipo de identidade que generaliza as identidades de Capelli. / In this work we use Young’s Theory for representations of the symmetric groups in the study of PI-algebras. Amitai Regev (1972) introduced the concepts of codimension and cocharacter of PI-algebras, which are the main tools in this study. We first present the Hook Theorem, which was proved by Amitsur and Regev in 1982. This theorem refers to the behavior of the sequence of cocharacters of a PI-algebra, giving conditions for an irreducible character of the group Sn to appear with nonzero multiplicity in the decomposition of the cocharacter of this PI-algebra. We also present three applications of this theorem, including the Amitsur’s theorem, which ensures that all PI-algebra satisfies a power of a standard polynomial. Finally, we study the results of Amitsur and Regev (1982) about a type identity that generalizes the Capelli identities

Page generated in 0.0577 seconds