• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ambient carbonation of mining residues : understanding the mechanisms and optimization of direct carbon dioxide mineral sequestration

Assima, Gnouyaro Palla 20 April 2018 (has links)
Les énormes quantités de résidus miniers ultramafiques (ultrabasiques), RMU, produites par les activités minières à travers le monde et accumulées sous forme d’amas plurikilométriques suscitent un vif intérêt quant à leur possible virtuosité à séquestrer de manière stable et durable le CO2. Accessibles à coût quasi nul et très souvent sous forme concassés et/ou broyés, les RMU facilitent leur propre mise en œuvre dans diverses technologies et procédés de séquestration minérale du CO2. Conséquemment, les RMU se sont retrouvés au cœur de plusieurs procédés de capture du CO2 de post/précombustion, jumelés à divers actifs accélérateurs tels que les réactifs chimiques, les hautes températures et/ou les hautes pressions. La vitesse de la réaction de carbonatation des RMU étant relativement plus faible que la vitesse d’émission du CO2 des échappements des usines, beaucoup d’études autour de cette alternative de capture du CO2 ont été progressivement abandonnées. La nécessité d’une recherche plus approfondie et plus systématique de la réactivité des RMU s’est donc imposée afin de déceler et de décoder les divers intervenants de la réaction et éventuellement proposer des conditions optimales pour améliorer leur réactivité dans des conditions moins contraignantes. Le présent travail de thèse explore par conséquent le potentiel des RMU disponibles dans la province de Québec (Thetford Mines, Asbestos, Nunavik, Amos, Mont Otish) dans les conditions ambiantes, en tant qu’alternative économiquement rentable pour soutirer directement le CO2 de l’atmosphère et atténuer les conséquences associées à sa hausse, notamment le réchauffement planétaire et les problèmes qui en découlent. Toutes les expériences ont été réalisées à l’échelle laboratoire sur des lits fixes de RMU de plusieurs grammes (3-200 g) avec pour objectif de reproduire, le plus fidèlement possible, les tas de résidus naturellement entreposés sur les sites miniers. Les caractéristiques du volume gazeux (teneur en CO2, teneur en oxygène, humidité relative et température) et des lits fixes de RMU (saturation liquide, conductivité ionique, perte de charge et température) sont continuellement examinées afin de déchiffrer les mécanismes sous-jacents de la réaction. Afin de mener à bien nos études, plusieurs réacteurs ont été spécifiquement construits pour simuler les divers aléas climatiques. L’impact des conditions environnementales auxquelles sont assujetties les résidus dans leur lieu de stockage telles que les fluctuations de température, la précipitation liquide, la submersion, l’assèchement, le gradient d’oxygène et la diffusion du CO2 a été minutieusement étudié. Les périodes sèches et les périodes de fortes pluies ont été catégorisées comme étant non propices à la séquestration du CO2. Une faible saturation liquide des pores des RMU est par contre adéquate à la carbonatation car combinant la dissémination rapide des espèces dissoutes du CO2 et la création dans tout le tas de résidus de zones super-réactives. Les périodes chaudes accélèrent substantiellement la capture du CO2 comparativement aux périodes froides. Ces dernières sont toutefois caractérisées par une génération perceptible de chaleur potentiellement récupérable par des systèmes géothermiques fonctionnant à de basses températures. Le pouvoir oxydant de l’oxygène de l’air génère une passivation précoce des particules de RMU, inhibant la réaction par la précipitation des hydroxydes de fer (III). La mise en œuvre de techniques de chélation, de drainage et d’aération a également été étudiée et proposée dans le but d’améliorer et de faire perdurer la réaction de carbonatation dans les conditions ambiantes. / The huge amounts of ultramafic (ultrabasic) mining residues (UMR) produced by mining activities around the world, which accumulate as multi-square kilometer stockpiles, are leading to a growing interest regarding their possible use as stable and permanent sinks for atmospheric CO2. Virtually costless and often found crushed and / or ground, UMR can be exploited in various technologies and methods for CO2 mineral sequestration. Consequently, UMR is ubiquitous at the heart of several post / pre-combustion CO2 capture processes, often paired with various enhancers/accelerators such as chemical reagents, high temperatures and / or high pressures. The carbonation reaction rate using UMR is relatively lower than the rate of CO2 emission from plant exhaust and therefore, many studies revolving around this CO2 capture alternative were gradually abandoned. The necessity of more thorough and systematic investigation of the reactivity of UMR obliges us to identify and decode the various bottlenecks of the carbonation reaction and eventually provide the best possible conditions to improve their reactivity under less constraining conditions. This thesis, therefore, explores the potential of UMR sources available in Quebec (Thetford Mines, Asbestos, Nunavik, Amos, Otish Mountain), under ambient conditions, as a cost-effective alternative to remove CO2 from the atmosphere and mitigate the consequences directly associated to its increase, such as global warming and its associated problems. All experiments were performed on a laboratory scale fixed bed using a small samples (3-200 g) of UMR with the goal to mimic as closely as possible, mining residue piles existing or abandoned on mine sites. The gas volume characteristics (CO2 and oxygen contents, relative humidity and temperature) and UMR fixed-bed characteristics (liquid saturation, ionic conductivity, pressure drop and temperature) were continually monitored in order to unveil the underlying mechanisms of the reaction. In order to carry out our studies, several reactors were built specifically to simulate various modes of climatic change. The impact of various environmental conditions to which the residues are subjected in their storage location, such as temperature fluctuations, precipitation, flooding, drought, oxygen gradients and CO2 diffusion has been thoroughly studied. Dry and heavy rain periods were categorized as unsuitable for CO2 sequestration. Conversely, low liquid saturation within the UMR pores is suitable for carbonation by combining a fast dissemination of CO2 dissolved species and creation of highly reactive sites throughout the mining residue pile. Warm periods substantially accelerate the rate of CO2 uptake as compared to cold periods, which in contrast, are characterized by a substantial heat generation possibly retrievable by low temperature geothermal systems. The presence of oxygen in the reaction medium induces rapid UMR particle passivation by iron (III) hydroxide, promptly inhibiting the reaction. The implementation of techniques such as chelation, draining and venting was also investigated with the aim of improving and sustaining the carbonation reaction under ambient conditions.
2

Séquestration géologique du CO₂ par carbonatation minérale dans les résidus miniers

Lechat, Karl Dominique 24 April 2018 (has links)
La carbonatation minérale dans les résidus miniers est un moyen sûr et permanent de séquestrer le CO2 atmosphérique. C’est un processus naturel et passif qui ne nécessite aucun traitement particulier et donc avantageux d’un point de vue économique. Bien que la quantité de CO2 qu’il soit possible de séquestrer selon ce processus est faible à l’échelle globale, dans le cadre d’un marché du carbone, les entreprises minières pourraient obtenir des crédits et ainsi revaloriser leurs résidus. À l’heure actuelle, il y a peu d’informations pour quantifier le potentiel de séquestration du CO2 de façon naturelle et passive dans les piles de résidus miniers. Il est donc nécessaire d’étudier le phénomène pour comprendre comment évolue la réaction à travers le temps et estimer la quantité de CO2 qui peut être séquestrée naturellement dans les piles de résidus. Plusieurs travaux de recherche se sont intéressés aux résidus miniers de Thetford Mines (Québec, Canada), avec une approche principalement expérimentale en laboratoire. Ces travaux ont permis d’améliorer la compréhension du processus de carbonatation, mais ils nécessitent une validation à plus grande échelle sous des conditions atmosphériques réelles. L’objectif général de cette étude est de quantifier le processus de carbonatation minérale des résidus miniers sous des conditions naturelles, afin d’estimer la quantité de CO2 pouvant être piégée par ce processus. La méthodologie utilisée repose sur la construction de deux parcelles expérimentales de résidus miniers situées dans l’enceinte de la mine Black Lake (Thetford Mines). Les résidus miniers sont principalement constitués de grains et de fibres de chrysotile et lizardite mal triés, avec de petites quantités d’antigorite, de brucite et de magnétite. Des observations spatiales et temporelles ont été effectuées dans les parcelles concernant la composition et la pression des gaz, la température des résidus, la teneur en eau volumique, la composition minérale des résidus ainsi que la chimie de l’eau des précipitations et des lixiviats provenant des parcelles. Ces travaux ont permis d’observer un appauvrissement notable du CO2 dans les gaz des parcelles (< 50 ppm) ainsi que la précipitation d’hydromagnésite dans les résidus, ce qui suggère que la carbonatation minérale naturelle et passive est un processus potentiellement important dans les résidus miniers. Après 4 ans d’observations, le taux de séquestration du CO2 dans les parcelles expérimentales a été estimé entre 3,5 et 4 kg/m3/an. Ces observations ont permis de développer un modèle conceptuel de la carbonatation minérale naturelle et passive dans les parcelles expérimentales. Dans ce modèle conceptuel, le CO2 atmosphérique (~ 400 ppm) se dissout dans l'eau hygroscopique contenue dans les parcelles, où l'altération des silicates de magnésium forme des carbonates de magnésium. La saturation en eau dans les cellules est relativement stable dans le temps et varie entre 0,4 et 0,65, ce qui est plus élevé que les valeurs de saturation optimales proposées dans la littérature, réduisant ainsi le transport de CO2 dans la zone non saturée. Les concentrations de CO2 en phase gazeuse, ainsi que des mesures de la vitesse d'écoulement du gaz dans les cellules suggèrent que la réaction est plus active près de la surface et que la diffusion du CO2 est le mécanisme de transport dominant dans les résidus. Un modèle numérique a été utilisé pour simuler ces processus couplés et valider le modèle conceptuel avec les observations de terrain. Le modèle de transport réactif multiphase et multicomposant MIN3P a été utilisé pour réaliser des simulations en 1D qui comprennent l'infiltration d'eau à travers le milieu partiellement saturé, la diffusion du gaz, et le transport de masse réactif par advection et dispersion. Même si les écoulements et le contenu du lixivat simulés sont assez proches des observations de terrain, le taux de séquestration simulé est 22 fois plus faible que celui mesuré. Dans les simulations, les carbonates précipitent principalement dans la partie supérieure de la parcelle, près de la surface, alors qu’ils ont été observés dans toute la parcelle. Cette différence importante pourrait être expliquée par un apport insuffisant de CO2 dans la parcelle, qui serait le facteur limitant la carbonatation. En effet, l’advection des gaz n’a pas été considérée dans les simulations et seule la diffusion moléculaire a été simulée. En effet, la mobilité des gaz engendrée par les fluctuations de pression barométrique et l’infiltration de l’eau, ainsi que l’effet du vent doivent jouer un rôle conséquent pour alimenter les parcelles en CO2. / Mineral carbonation in ultramafic mining wastes is a safe and permanent way to sequester atmospheric CO2. This process can occur naturally and passively, and does not require special treatment, which is interesting from an economical point of view. In the context of a carbon market, mining companies could obtain carbon credits and profit financially and environmentally from their residues. However, there is currently insufficient information to accurately assess the potential for natural and passive CO2 sequestration in mining waste piles. It is therefore necessary to study the phenomenon to understand how the reaction evolves over time and estimate the amount of CO2 that can be naturally sequestered in these structures. Several research studies have focused on the ultramafic milling wastes at Thetford Mines (Quebec, Canada), and have particularly focused on laboratory experiments. The results have improved our understanding of the mineral carbonation process in milling waste, but they need to be tested at larger scales and under real atmospheric conditions. The general objective of this study is to quantify the mineral carbonation process in mining waste under natural conditions, and to estimate the amount of CO2 that can be trapped by this process. The methodology is based on the construction of two experimental cells of milling waste located at the Black Lake mine (Thetford Mines). The magnesium-rich milling wastes mainly consist of poorly sorted grains and fibers of lizardite and chrysotile, with smaller amounts of antigorite, brucite and magnetite. Spatial and temporal observations were made in the cells, including measurements of the composition and pressure of gas, soil temperature, volumetric water content, waste mineralogy as well as water chemistry of rain and of the cell leachate. The observations showed evidence of a significant depletion of CO2 gas concentrations (< 50 ppm) and precipitation of hydromagnesite in the milling waste, suggesting that natural and passive mineral carbonation is a potentially important process in milling wastes. After four years of observations, the CO2 sequestration rates in the experimental cells were estimated at between 3.5 and 4 kg/m3/year. These observations have led to the development of a conceptual model of natural and passive mineral carbonation at the cell scale. In this conceptual model, atmospheric CO2 (~ 400 ppm) dissolves in the hygroscopic water contained in the cells where the weathering of magnesium silicates forms magnesium carbonates. Water saturation in the cells was relatively stable over time and varied between 0.4 and 0.65, which is higher than optimal saturation values proposed in the literature, reducing CO2 transport in the unsaturated zone. Gas-phase CO2 concentrations along with gas flow rate measurements in the cells suggest that the reaction is most active close to the surface and that diffusion of CO2 is the dominant transport mechanism in the wastes. Although the carbonation reaction is exothermic, no evidence of thermal convection has been observed in the experimental cells. A numerical model was used to simulate the identified coupled processes and to validate the conceptual model with field observations. The numerical model MIN3P, for multiphase and multi-component reactive transport problems, was used to complete 1D simulations which included water infiltration through the partially-saturated column, gas diffusion, and advective-dispersive reactive mass transport. Although the calibrated moisture content and leachate composition were quite close to field observations, the simulated sequestration rate is 22 times lower than the measured rate. The simulation results also suggested that carbonates would precipitate mainly near the surface whereas field observations suggest that mineral carbonation had occurred throughout the vertical profile. This significant difference could be explained by an insufficient supply of CO2 in the simulated cells, which is the limiting factor for mineral carbonation, suggesting that gas advection, which was not considered in the simulations, could have been important. It is concluded that gas mobility generated by barometric pressure fluctuations and water infiltration, as well as wind effects, likely played a significant role for CO2 supply within the cells and should be considered in future simulations.
3

Séquestration du CO₂ associée aux phénomènes de minéralisation passive du carbone dans les résidus miniers du Projet Dumont Nickel (Abitibi-Témiscamingue, Québec, Canada)

Gras, Antoine 03 July 2018 (has links)
L'implication des émissions de dioxyde de carbone (CO2) anthropiques dans les changements climatiques est aujourd'hui admise et des solutions émergent pour lutter contre l'accumulation de CO2. La minéralisation du carbone, qui permet de séquestrer le CO2 sous forme de carbonates, stables à l'échelle géologique, est une des options envisagées. Parmi les voies de minéralisation du carbone envisagées, la minéralisation passive des résidus miniers ultramafiques permettrait de compenser les émissions en CO2 d'une exploitation minière. Toutefois, les impacts sur la qualité des eaux de lixiviation et l'évolution de la capacité de séquestration en conditions naturelles, à moyenne et grande échelle, sont peu documentés. La compagnie RNC Minerals a pour objectif d'exploiter un gisement de nickel situé dans le Nord-Ouest de la province du Québec. L'exploitation du Projet Dumont Nickel (PDN) aboutirait à la production d'environ 1,7 Gt de résidus miniers ultramafiques. Les différents facteurs qui influencent la capacité de séquestration des résidus du PDN ont été étudiés en laboratoire, à des teneurs en CO2 variables. Dans cette étude, les processus de la minéralisation passive dans les résidus du PDN, sont décrits et la capacité de séquestration en CO2 atmosphérique est estimée à moyenne échelle, en conditions naturelles. Pour étudier les impacts de l'altération météorique des résidus miniers du PDN, deux cellules expérimentales ont été construites et instrumentées. La première EC-1, contient les résidus ultramafiques, qualifiés de stériles (Waste-rock) et la seconde EC-2 a été remplie avec les résidus d'usinage (Tailings). Les propriétés hydrogéologiques et la surface spécifique des résidus des deux cellules sont différentes alors que la minéralogie est similaire. Les résidus sont composés principalement d'antigorite, de lizardite, de chrysotile, de brucite, de magnetite et de chlorite. Entre 2011 et 2015, l'évolution de la concentration en CO2, de la minéralogie, et de la composition chimique des lixiviats ont été enregistrées. Le suivi des concentrations en CO2 permet d'observer une diminution de la concentration en CO2 de la surface (~390 ppmv) vers le fond des parcelles (~100 ppmv). Dans le même temps, la teneur en carbone dans les résidus altérés a augmenté et les analyses minéralogiques révèlent la présence de plusieurs carbonates de magnésium comme l'hydromagnésite. Ces données suggèrent que les résidus séquestrent du CO2 passivement. Dans les cellules expérimentales le CO2 peut provenir de 3 sources : (1) l'atmosphère, (2) la dégradation de la matière organique, et (3) la dissolution des carbonates. Les compositions isotopiques du CO2(g), et des carbonates néoformés ont été mesurées. Ces analyses ont permis de mettre en évidence que la dissolution du CO2(g) dans l'eau interstitielle limite la capacité de séquestration et que le CO2 atmosphérique est la source du CO2 séquestré. Malgré les différences entre les deux cellules expérimentales les même processus contrôlent la séquestration du CO2. Un modèle conceptuel de la réaction de minéralisation du carbone, comprenant l'évolution de la composition isotopique, est proposé. Les lixiviats, récoltés aux bas des cellules expérimentales entre mai et novembre depuis 2011 sont caractérisés par un pH alcalin (~9,5), une alcalinité élevée (~90 à ~750 mg/L) et une forte concentration en magnésium (~50 à ~750 mg/L). Cette composition est en accord avec l'altération des résidus ultramafiques en milieu ouvert au CO2. Depuis 2012, la composition chimique des lixiviats évolue en fonction des saisons. Ces variations saisonnières sont expliquées par : (1) les variations climatiques au cours d'une année et (2) l'augmentation de la précipitation de carbonate entre mai et juillet. La diminution saisonnière de l'alcalinité et de la concentration en magnésium, provoqué par l'augmentation de la précipitation de carbonates, induit une sous-saturation des minéraux carbonatés ce qui limite la capacité de séquestration en CO2. Un taux de séquestration en CO2 atmosphérique de 1,4 (+/- 0.3) kg CO2/tonne/an a été mesuré dans les résidus de concentrateur (EC-2). À l'échelle de l'exploitation minière, les résidus de concentrateur permettraient la séquestration de 21 kt de CO2 atmosphérique par an ce qui correspond à un quart des émissions annuelles de la future mine. Le modèle MIN3P, qui permet de simuler le transport réactif multi composants et multiphasiques dans un milieu poreux insaturé, a été utilisé pour simuler en 1D la réaction de minéralisation au centre de la cellule EC-2. L'ensemble des données récoltées a été utilisé pour calibrer le modèle. Toutefois, aucune des simulations n’a permis de reproduire l'évolution de la géochimie des lixiviats et la concentration en CO2 observés. Plusieurs simplifications du modèle conceptuel pourraient expliquer les différences avec les données observées. / The implication of anthropogenic carbon dioxide (CO2) emissions in climate change is now widely accepted and solutions are emerging in order to limit the accumulation of CO2. Carbon mineralization, which allows the sequestration of CO2 through carbonate precipitation, stable minerals over geological time scales, is one of the options considered. Among the proposed carbon mineralization pathways, passive carbon mineralization in ultramafic mining residues can potentially lead to developing carbon-neutral mines. However, the impacts on leachate water quality and evolution of sequestration capacity in natural conditions, on medium and large scales, are still poorly documented. RNC Minerals plans to mine a nickel deposit located in the northwestern part of Quebec. The operation at the Dumont Nickel Project (DNP) would produce approximately 1.7 Gt of ultramafic mining residues. Several factors which influence the carbon sequestration capacity of the DNP residues have been studied in the laboratory, at variable CO2 concentrations. In this study, the processes of passive carbon mineralization in the DNP mining residues are described and the atmospheric CO2 sequestration capacity is estimated, at the experimental cell scale, under natural conditions. In order to study the impacts of meteoric weathering of the DNP residues, two experimental cells were built and instrumented. The first cell EC-1, contains the ultramafic waste rock, and the second EC-2, was filled with milling residues (Tailings). The hydrogeological properties and surface area of the residues contained in the two cells are different whereas the mineralogy is similar. The main minerals in the residues are chrysotile, lizardite, brucite, chlorite and magnetite. Between 2011 and 2015, changes in CO2 concentrations, mineralogy, and chemical composition of leachate waters were recorded. Monitoring of CO2 concentrations showed a decrease in CO2 concentration from the surface (~ 390 ppmv) to the bottom of the cells (~ 100 ppmv). At the same time, the carbon content in the weathered residues increased and the mineralogical analyses revealed precipitation of several magnesium carbonates such as hydromagnesite. These observations indicate that passive mineral carbonation of the mining residues is occurring within the experimental cells, for which three potential sources of CO2 can be identified : (1) the atmosphere, (2) the CO2(g) produced from organic matter oxydation, and (3) CO2(g) produced from carbonate dissolution. The isotopic compositions of CO2(g) and newly formed carbonates were measured. Using these isotopic compositions it was possible to demonstrate that dissolution of CO2(g) in interstitial water limits the sequestration capacity and that atmospheric CO2 is the main source of the CO2 sequestered. Despite the differences between the two experimental cells the same processes control CO2 sequestration. A conceptual model of the carbon mineralization reactions, including evolution of the isotopic compositions, is proposed. The leachate water sampled at the bottom of the experimental cells, between May and November since 2011, is characterized by an alkaline pH (~9.5), a high alkalinity (~90 to ~750 mg/L CaCO3) and a high concentration of magnesium (~50 at ~750 mg/L). This composition is consistent with weathering of ultramafic rocks in a system open to CO2. Since 2012, the chemical composition of the leachate water was evolved seasonnaly. These seasonal variations are explained by: (1) recharge and temeprature variations over the year and (2) increased carbonate precipitation between May and July. The seasonal decrease of alkalinity and magnesium concentrations, caused by increased carbonate precipitation, induces undersaturation of carbonate minerals. Therefore carbonate precipitation self-limits carbon sequestration through a negative feed-back loop. Since 2011, an estimated 13 kg of atmospheric CO2 was sequestered in the milling residues from EC-2, which corresponds to a mean rate of 1,4 (+/- 0.3) kgCO2/tonne/year. Using this mean rate, during the mining operation the milling residues will sequester about 21 kt of atmospheric CO2 each year, which will represents one quarter of the 127,700 tonnes of CO2 emitted. Using MIN3P, a numerical model which allow to simulate multi-component and multiphase reactive transport in unsaturated porous media, the carbon mineralization reactions were simulated in 1D at the center of cell EC-2. The data collected during the 4 years of monitoring were used to calibrate the numerical model. However, none of the simulations allowed to reproduce the evolution of the leachate water geochemistry and the CO2 concentrations observed in the experimental cell. Several simplifications of the conceptual model could explain the differences with the observed data.
4

Caractérisation physico-chimique de la carbonatation minérale des résidus miniers ultramafiques de la région de Thetford Mines, Québec

El Mansour, Nadia 01 March 2019 (has links)
L’origine de la croissance très rapide des émissions des gaz à effet de serre est attribuée, pour plus des ¾, au seul dioxyde de carbone (CO₂). Ce dernier engendre d’importants impacts sur l’équilibre thermique de la Terre, sur l’environnement et sur la biodiversité. Il est donc nécessaire de mettre en oeuvre des actions d’envergure pour réduire ces émissions. La carbonatation minérale est l’une des méthodes de la séquestration du CO₂, qui participe significativement à l’effort global de réduction des émissions d’origine anthropique dans l’atmosphère. Plusieurs auteurs ont montré que le processus de carbonatation minérale se produit naturellement en surface de la halde à résidus miniers de la mine LAB Chrysotile à Thetford Mines, Québec (Canada). L’objectif de ce projet est de trouver les évidences de la carbonatation minérale en soussurface de la halde à résidus miniers en caractérisant les phases minérales carbonatées des échantillons d’un forage de 90 m de profondeur et en identifiant les horizons présentant un fort potentiel de carbonatation minérale. Un total de 42 échantillons de forage a été prélevé à différentes profondeurs puis tamisés, broyés et analysés par les méthodes suivantes : analyseur élémentaire carbone-soufre, appareil infrarouge à transformée de Fourier-ATR, microfluorescence des rayons X et le microscope électronique à balayage. Les résultats ont montré la présence de l’artinite, la nésquehonite, la dypingite et l’hydromagnésite dans tous les échantillons analysés cela prouve que les minéraux carbonatés sont stable à l’intérieure de la pile de résidu. Cependant les minéraux ont peutêtre précipité à la surface puis avoir été subséquemment enfouis par d’autres résidus. La corrélation entre les absorbances, la teneur en carbone, les mesures de la résistivité et de la susceptibilité magnétique montre que la carbonatation minérale s'est produite d’une manière très hétérogène tout au long du forage, mais que les horizons aux profondeurs entre 15-20 m, 24-29 m, 37-42 m, 57 m, 65-69 m, 80-84 m et à 89 m ont une concentration significative en carbonates de magnésium hydratés.

Page generated in 0.0504 seconds