• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparing Non-Bayesian Uncertainty Evaluation Methods in Chromosome Classification by Using Deep Neural Networks

Zenciroglu, Sevket Melih January 2021 (has links)
Chromosome classification is one of the essential tasks in karyotyping to diagnose genetic abnormalities like some types of cancers and Down syndrome. Deep convolutional neural networks have been widely used in this task, and the accuracy of classification models is exceptionally critical to such sensitive medical diagnoses. However, it is not always possible to meet the expected accuracy rates for diagnosis. So, it is vital to tell how certain or uncertain a model is with its decision. In our work, we use two metrics, entropy and variance, as uncertainty measurements. Moreover, three additional metrics, fail rate, workload, and tolerance range, are used to measure uncertainty metrics’ quality. Four different non-Bayesian methods: deep ensembles, snapshot ensembles, Test Time Augmentation, and Test Time Dropout, are used in experiments. A negative correlation is observed between the accuracy and the uncertainty estimation; the higher the accuracy of the model, the lower the uncertainty. Densenet121 with deep ensembles as the uncertainty evaluation method and variance as the uncertainty metric gives the best outcomes. Densenet121 provides a wider tolerance range and better separation between uncertain and certain predictions. / Kromosomklassificering är en av de viktigaste uppgifterna i Karyotyping för att diagnostisera genetiska abnormiteter som vissa typer av cancer och Downs syndrom. Deep Convolutional Neural Networks har använts i stor utsträckning i denna uppgift, och noggrannheten hos klassificeringsmodeller är exceptionellt kritisk för sådana känsliga medicinska diagnoser. Det är dock inte alltid möjligt att uppfylla de förväntade noggrannhetsgraderna för diagnos. Så det är viktigt att berätta hur säker eller osäker en modell är med sitt beslut. Forskning har gjorts för att uppskatta osäkerheten med bayesiska metoder och icke-bayesiska neurala nätverk, medan lite är känt om kvaliteten på osäkerhetsuppskattningar. I vårt arbete använder vi två mått, entropi och varians, som osäkerhetsmätningar. Dessutom används ytterligare tre mätvärden, felfrekvens, arbetsbelastning och toleransintervall för att mäta osäkerhetsmätarnas kvalitet. Fyra olika icke-bayesiska metoder: djupa ensembler, ögonblicksbilder, Test Time Augmentation (TTA) och Test Time Dropout (TTD) används i experiment. En negativ korrelation observeras mellan noggrannheten och osäkerhetsuppskattningen; ju högre noggrannhet modellen är, desto lägre är osäkerheten. Densenet121 med djupa ensembler som osäkerhetsutvärderingsmetod och varians som osäkerhetsmätvärdet ger de bästa resultaten. De ger ett bredare toleransintervall och bättre separation mellan osäkra och vissa förutsägelser.

Page generated in 0.1468 seconds