• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physically consistent boundary conditions for free-molecular satellite aerodynamics

Parham, Jonathan Brent January 2014 (has links)
Thesis (M.Sc.Eng.) / To determine satellite trajectories in low earth orbit, engineers need to adequately estimate aerodynamic forces. But to this day, such a task su↵ers from inexact values of drag forces acting on complicated shapes that form modern spacecraft. While some of the complications arise from the uncertainty in the upper atmosphere, this work focuses on the problems in modeling the flow interaction with the satellite geometry. The only numerical approach that accurately captures e↵ects in this flow regime—like self-shadowing and multiple molecular reflections—is known as Test Particle Monte Carlo. This method executes a ray-tracing algorithm to follow particles that pass through a control volume containing the spacecraft and accumulates the momentum transfer to the body surfaces. Statistical fluctuations inherent in the approach demand particle numbers on the order of millions, often making this scheme too costly to be practical. This work presents a parallel Test Particle Monte Carlo method that takes advantage of both graphics processing units and multi-core central processing units. The speed at which this model can run with millions of particles enabled the exploration of regimes where a flaw was revealed in the model’s initial particle seeding. A new model introduces an analytical fix to this flaw—consisting of initial position distributions at the boundary of a spherical control volume and an integral for the correct number flux—which is used to seed the calculation. This thesis includes validation of the proposed model using analytical solutions for several simple geometries and demonstrates uses of the method for the aero-stabilization of the Phobos-Grunt Martian probe and pose-estimation for the ICESat mission. / 2031-01-01
2

Studies of Heavy Ion Induced Desorption in the Energy Range 5-100 MeV/u

Hedlund, Emma January 2008 (has links)
<p>During operation of heavy ion accelerators a significant pressure rise has been observed when the intensity of the high energy beam was increased. The cause for this pressure rise is ion induced desorption, which is the result when beam ions collide with residual gas molecules in the accelerator, whereby they undergo charge exchange. Since the change in charge state will affect the bending radius of the particles after they have passed a bending magnet, they will not follow the required trajectory but instead collide with the vacuum chamber wall and gas are released. For the Future GSI project FAIR (Facility for Antiproton and Ion Research) there is a need to upgrade the SIS18 synchrotron in order to meet the requirements of the increased intensity. The aim of this work was to measure the desorption yields, η, (released molecules per incident ion) from materials commonly used in accelerators: 316LN stainless steel, Cu, Etched Cu, gold coated Cu, Ta and TiZrV coated stainless steel with argon and uranium beams at the energies 5-100 MeV/u. The measurements were performed at GSI and at The Svedberg Laboratory where a new dedicated teststand was built. It was found that the desorption yield scales with the electronic energy loss to the second power, decreasing for increasing impact energy above the Bragg Maximum. A feasibility study on the possibility to use laser refractometry to improve the accuracy of a specific throughput system was performed. The result was an improvement by up to 3 orders of magnitude, depending on pressure range.</p>
3

Inférence exacte et non paramétrique dans les modèles de régression et les modèles structurels en présence d'hétéroscédasticité de forme arbitraire

Coudin, Élise January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
4

Studies of Heavy Ion Induced Desorption in the Energy Range 5-100 MeV/u

Hedlund, Emma January 2008 (has links)
During operation of heavy ion accelerators a significant pressure rise has been observed when the intensity of the high energy beam was increased. The cause for this pressure rise is ion induced desorption, which is the result when beam ions collide with residual gas molecules in the accelerator, whereby they undergo charge exchange. Since the change in charge state will affect the bending radius of the particles after they have passed a bending magnet, they will not follow the required trajectory but instead collide with the vacuum chamber wall and gas are released. For the Future GSI project FAIR (Facility for Antiproton and Ion Research) there is a need to upgrade the SIS18 synchrotron in order to meet the requirements of the increased intensity. The aim of this work was to measure the desorption yields, η, (released molecules per incident ion) from materials commonly used in accelerators: 316LN stainless steel, Cu, Etched Cu, gold coated Cu, Ta and TiZrV coated stainless steel with argon and uranium beams at the energies 5-100 MeV/u. The measurements were performed at GSI and at The Svedberg Laboratory where a new dedicated teststand was built. It was found that the desorption yield scales with the electronic energy loss to the second power, decreasing for increasing impact energy above the Bragg Maximum. A feasibility study on the possibility to use laser refractometry to improve the accuracy of a specific throughput system was performed. The result was an improvement by up to 3 orders of magnitude, depending on pressure range.

Page generated in 0.096 seconds