• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

joining polycarbonate – manufacturing and evaluation of transparent joints using an innovative objective test method

Hofmann, Karoline 05 December 2017 (has links) (PDF)
Large-scale laminated safety glass is increasingly used in the public and private sector for example museums, jewelers or villas. Special safety is provided by these glasses in layered combination with polycarbonate sheets. Due to the low weight and its high tensile elongation comparing glass of the same thickness, highly transparent polycarbonate is suitable for safety-relevant components. Because of the dimensional limitation in the extrusion process, joining polycarbonate compounds are necessary for large-area joint of this laminated safety glass. According to the present state of the art, a transparent weld joint of polycarbonate is not possible. Within the scope of the project, polycarbonate joints were produced by infrared welding and adhesive bonding. The transparency of the joints was realized by varying the process parameters, for example the heating time. Additionally the present study focusses on a new innovative light intensity measurement, because conventional optical test methods can only subjectively assess the transparency and quality of the compound and the welding seam. The principle is based on the transmission of the welded and polished polycarbonate sample by means of a laser and the measurement of the current at the connected photoelectric cell, which is proportional to the intensity of the laserlight. This enables a qualitative evaluation of the joining dimension and -quality such as structural changes over the entire sample width. The results of this objective method correlate with the width of the stress distribution around the joining level, which are made visible with the photoelasticity using a polariscope and thus contribute to a better process understanding.
2

joining polycarbonate – manufacturing and evaluation of transparent joints using an innovative objective test method: joining polycarbonate–manufacturing and evaluation of transparent joints using an innovative objective test method

Hofmann, Karoline 05 December 2017 (has links)
Large-scale laminated safety glass is increasingly used in the public and private sector for example museums, jewelers or villas. Special safety is provided by these glasses in layered combination with polycarbonate sheets. Due to the low weight and its high tensile elongation comparing glass of the same thickness, highly transparent polycarbonate is suitable for safety-relevant components. Because of the dimensional limitation in the extrusion process, joining polycarbonate compounds are necessary for large-area joint of this laminated safety glass. According to the present state of the art, a transparent weld joint of polycarbonate is not possible. Within the scope of the project, polycarbonate joints were produced by infrared welding and adhesive bonding. The transparency of the joints was realized by varying the process parameters, for example the heating time. Additionally the present study focusses on a new innovative light intensity measurement, because conventional optical test methods can only subjectively assess the transparency and quality of the compound and the welding seam. The principle is based on the transmission of the welded and polished polycarbonate sample by means of a laser and the measurement of the current at the connected photoelectric cell, which is proportional to the intensity of the laserlight. This enables a qualitative evaluation of the joining dimension and -quality such as structural changes over the entire sample width. The results of this objective method correlate with the width of the stress distribution around the joining level, which are made visible with the photoelasticity using a polariscope and thus contribute to a better process understanding.

Page generated in 0.0443 seconds